- Periplogenin-3-O- -D-glucopyranosyl -(1-->6)- -D-glucopyaranosyl- -(1-->4) -D-cymaropyranoside, isolated from Aegle marmelos protects doxorubicin induced cardiovascular problems and hepatotoxicity in rats.
Periplogenin-3-O- -D-glucopyranosyl -(1-->6)- -D-glucopyaranosyl- -(1-->4) -D-cymaropyranoside, isolated from Aegle marmelos protects doxorubicin induced cardiovascular problems and hepatotoxicity in rats.
Doxorubicin is a common chemotherapeutic anticancer drug. Its use is associated with adverse effects including cardiotoxicity. Several therapeutics interventions have been attempted to reduce the toxicity and to improve the efficacy of the drug. However, on phytochemicals very few investigations have been made. In the present study we have evaluated the potential of a cardenolide, periplogenin, isolated from the leaves of Aegle marmelos in protecting the doxorubicin induced cardiotoxicity and lipid peroxidation (LPO) in rats. Doxorubicin induced cardiac and hepatotoxicity were characterized by marked biochemical changes including an increase in serum creatine kinase-MB (CK-MB), glutamate-pyruvate transaminase (SGPT), and tissue LPO, with a decrease in superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). It also increased the levels of different serum lipids, but decreased the amount of high-density lipoprotein (HDL). Cotherapy of the test cardenolide and doxorubicin for 4 weeks reversed all these adverse effects. However, out of three different concentrations (12.5, 25, and 50 mg/kg p.o.) of the test periplogenin, 25 mg/kg appeared to be most effective. When its efficacy was compared with that of vitamin E (alpha-tocopherol) the isolated compound exhibited a better therapeutic potential. The isolated periplogenin from the leaves of A. marmelos could potentially inhibit doxorubicin-induced cardiovascular problems in rats. However, its moderate dose was found to be most effective.