- Fanconi anemia is characterized by delayed repair kinetics of DNA double-strand breaks.
Fanconi anemia is characterized by delayed repair kinetics of DNA double-strand breaks.
Among patients with bone marrow failure (BMF) syndrome, some are happened to have underlying Fanconi anemia (FA), a genetically heterogeneous disease, which is characterized by progressive pancytopenia and cancer susceptibility. Due to heterogeneous nature of the disease, a single genetic test, as in vitro response to DNA cross-linking agents, usually is not enough to make correct diagnosis. The aim of this study was to evaluate whether measuring repair kinetics of radiation-induced DNA double-strand breaks (DSBs) can distinguish Fanconi anemia from other BMF patients. An early step in repair of DSBs is phosphorylation of the histone H2AX, generating gamma-H2AX histone, which extends over mega base-pair regions of DNA from the break site and is visualised as foci (gamma-H2AX foci) with specific antibodies. The primary fibroblasts, established from FA patients, were exposed to gamma-rays, a dose of 2 Gy ((60)Co), incubated for up to 24 hours under repair-permissive conditions, and assayed for the level of gamma-H2AX foci and apoptosis at different recovery times after the treatment. Cell lines originating from FA patients displayed a significant delay in the repair of radiation-induced DNA DSBs relative to non-FA bone marrow failure (non-FA BMF) and control cell lines. The delay is especially evident at recovery time of 24 hours, and is seen as about 8-fold increase of residual gamma-H2AX foci compared to self-state before irradiation. The delay in repair kinetics of FA cells represents the unique feature of FA cellular phenotype, which should be exploited to distinguish FA cellular phenotype.