Skip to Content
MilliporeSigma
  • Raman spectroscopy, thermal and optical properties of TeO2-ZnO-Nb2O5-Nd2O3 glasses.

Raman spectroscopy, thermal and optical properties of TeO2-ZnO-Nb2O5-Nd2O3 glasses.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy (2012-01-21)
V Kamalaker, G Upender, Ch Ramesh, V Chandra Mouli
ABSTRACT

The glasses with composition 75TeO2-10ZnO-(15-x)Nb2O5-xNd2O3 (0≤x≤9 mol%) were prepared using melt quenching method and their physical properties such as density (ρ), molar volume (VM), average crosslink density (nc¯), oxygen packing density (OPD) and number of bonds per unit volume (nb) were determined. Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1, TeO3 and NbO6 units as basic structural units. The glass transition temperature (Tg), crystallization onset (To) and thermal stability (ΔT) were determined from DSC thermograms. The Raman and DSC results were found to be correlated with the physical properties. In the optical absorption spectra six absorption bands were observed with different relative intensities at around 464, 522, 576, 742, 801 and 871 nm which are assigned to the transition of electrons from (ground state) 4I9/2→G11/2; 4I9/2→2K3/2, 2G7/2; 4I9/2→4G5/2, 4G7/2; 4I9/2→4S3/2; 4F7/2→2H9/2, 4F5/2 and 4I9/2→2F3/2 respectively. From optical absorption data the energy band gap (Eopt) and Urbach energy (ΔE) were calculated.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tellurium dioxide, ≥97.0%
Sigma-Aldrich
Tellurium dioxide, ≥99%
Sigma-Aldrich
Tellurium dioxide, 99.995% trace metals basis
Sigma-Aldrich
Niobium(V) oxide, −325 mesh, 99.9% trace metals basis
Sigma-Aldrich
Niobium(V) oxide, 99.99% trace metals basis