Skip to Content
MilliporeSigma
  • Deactivation processes in PsbA1-Photosystem II and PsbA3-Photosystem II under photoinhibitory conditions in the cyanobacterium Thermosynechococcus elongatus.

Deactivation processes in PsbA1-Photosystem II and PsbA3-Photosystem II under photoinhibitory conditions in the cyanobacterium Thermosynechococcus elongatus.

Biochimica et biophysica acta (2012-02-14)
Shogo Ogami, Alain Boussac, Miwa Sugiura
ABSTRACT

The sensitivity to high light conditions of Photosystem II with either PsbA1 (WT*1) or PsbA3 (WT*3) as the D1 protein was studied in whole cells of the thermophilic cyanobacterium Thermosynechococcus elongatus. When the cells are cultivated under high light conditions the following results were found: (i) The O(2) evolution activity decreases faster in WT*1 cells than in WT*3 cells both in the absence and in the presence of lincomycin, a protein synthesis inhibitor; (ii) In WT*1 cells, the rate constant for the decrease of the O(2) evolution activity is comparable in the presence and in the absence of lincomycin; (iii) The D1 content revealed by western blot analysis decays similarly in both WT*1 and WT*3 cells and much slowly than O(2) evolution; (iv) The faster decrease in O(2) evolution in WT*1 than in WT*3 cells correlates with a much faster inhibition of the S(2)-state formation; (v) The shape of the WT*1 cells is altered. All these results are in agreement with a photo-inhibition process resulting in the loss of the O(2) activity much faster than the D1 turnover in PsbA1-PSII and likely to a greater production of reactive oxygen species under high light conditions in WT*1 than in WT*3. This latter result is discussed in view of the known effects of the PsbA1 to PsbA3 substitution on the redox properties of the Photosystem II cofactors. The observation that under low light conditions WT*3 cells are able to express the psbA(3) gene, whereas under similar conditions wild type cells are expressing mainly the psbA(1) gene is also discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lincomycin hydrochloride, 96.0-102.0% (HPLC)
Sigma-Aldrich
Lincomycin hydrochloride, BioReagent, suitable for cell culture
Sigma-Aldrich
Lincomycin hydrochloride, ≥90% (TLC)
Supelco
Lincomycin hydrochloride monohydrate, VETRANAL®, analytical standard
Lincomycin hydrochloride, European Pharmacopoeia (EP) Reference Standard