Skip to Content
MilliporeSigma
  • Dissolution of tablet-in-tablet formulations studied with ATR-FTIR spectroscopic imaging.

Dissolution of tablet-in-tablet formulations studied with ATR-FTIR spectroscopic imaging.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences (2013-01-08)
Patrick S Wray, Graham S Clarke, Sergei G Kazarian
ABSTRACT

This work uses ATR-FTIR spectroscopic imaging to study the dissolution of delayed release and pH resistant compressed coating pharmaceutical tablets. Tablets with an inner core and outer shell were constructed using a custom designed compaction cell. The core of the delayed release tablets consisted of hydroxypropyl methylcellulose (HPMC) and caffeine. The shell consisted of microcrystalline cellulose (MCC) and glucose. The core of the pH resistant formulations was an ibuprofen and PEG melt and the shell was constructed from HPMC and a basic buffer. UV/vis spectroscopy was used to monitor the lag-time of drug release and visible optical video imaging was used as a complementary imaging technique with a larger field of view. Two delayed release mechanisms were established. For tablets with soluble shell sections, lag-time was dependent upon rapid shell dissolution. For tablets with less soluble shells, the lag-time was controlled by the rate of dissolution medium ingress through the shell and the subsequent expansion of the wet HPMC core. The pH resistant formulations prevented crystallization of the ibuprofen in the core during dissolution despite an acidic dissolution medium. FTIR imaging produced important information about the physical and chemical processes occurring at the interface between tablet sections during dissolution.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methyl cellulose, 27.5-31.5% methoxyl basis
Sigma-Aldrich
Methyl cellulose, tested according to Ph. Eur.
Sigma-Aldrich
Methyl cellulose, medium viscosity, Methoxyl content 27.5-31.5 %
Sigma-Aldrich
Methyl cellulose, viscosity: 4,000 cP
Sigma-Aldrich
Methyl cellulose, viscosity: 15 cP, BioReagent, suitable for cell culture
Sigma-Aldrich
Methyl cellulose, 26.0-33.0% (Methoxy group (dry basis)), meets USP testing specifications, viscosity: 1,500 cP
Sigma-Aldrich
Methyl cellulose, meets USP testing specifications, 26.0-33.0% (methoxyl group, on Dry Basis), viscosity: 400 cP
Sigma-Aldrich
Methyl cellulose, viscosity: 25 cP
Sigma-Aldrich
Methyl cellulose, viscosity: 1,500 cP
Sigma-Aldrich
Methyl cellulose, 27.5-31.5% (Methoxyl content), viscosity: 400 cP
Sigma-Aldrich
Methyl cellulose, viscosity: 15 cP
Sigma-Aldrich
Methyl cellulose, viscosity 3000-5500 mPa.s, 2 % in H2O(20 °C)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~90,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~120,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~10,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~86,000
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose