Skip to Content
MilliporeSigma
  • Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2013-03-08)
Laura A Merriam, Caitlin N Baran, Beatrice M Girard, Jean C Hardwick, Victor May, Rodney L Parsons
ABSTRACT

After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Barium chloride dihydrate, ≥99.999% trace metals basis
Sigma-Aldrich
Barium chloride dihydrate, ACS reagent, ≥99%
Sigma-Aldrich
Barium chloride dihydrate, ≥99%
Sigma-Aldrich
Barium chloride, AnhydroBeads, −10 mesh, 99.95% trace metals basis
Sigma-Aldrich
Barium chloride, 99.9% trace metals basis
Sigma-Aldrich
Barium chloride, 99.999% trace metals basis
Sigma-Aldrich
Barium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis