Skip to Content
MilliporeSigma
  • Shear bond strength in zirconia veneered ceramics using two different surface treatments prior veneering.

Shear bond strength in zirconia veneered ceramics using two different surface treatments prior veneering.

Collegium antropologicum (2013-05-24)
Lana Bergman Gasparić, Zdravko Schauperl, Ketij Mehulić
ABSTRACT

Aim of the study was to assess the effect of different surface treatments on the shear bond strength (SBS) of the veneering ceramics to zirconia core. In a shear test the influence of grinding and sandblasting of the zirconia surface on bonding were assessed. Statistical analysis was performed using SPSS statistical package (version 17.0, SPSS Inc., Chicago, IL, USA) and Microsoft Office Excel 2003 (Microsoft, Seattle, WA, USA). There was a significant difference between the groups considering shear bond strength (SBS) values, i.e. ground and sandblasted samples had significantly higher SBS values than only ground samples (mean difference = -190.67; df = 10, t = -6.386, p < 0.001). The results of the present study indicate that ground and sandblasted cores are superior to ground cores, allowing significantly higher surface roughness and significantly higher shear bond strength between the core and the veneering material.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Polytetrafluoroethylene preparation, 60 wt % dispersion in H2O
Sigma-Aldrich
Zirconium(IV) oxide, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 200 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, >40 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), beads
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), ≤12 μm particle size
Sigma-Aldrich
Zirconium(IV) oxide, powder, 5 μm, 99% trace metals basis
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), 1 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 35 μm particle size
Sigma-Aldrich
Zirconium(IV) oxide, 99.99% trace metals basis (purity excludes ~2% HfO2)
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, ≥350 μm particle size
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 10 wt. % in H2O
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 5 wt. % in H2O
Sigma-Aldrich
Zirconium, powder, −100 mesh
Sigma-Aldrich
Zirconium, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Zirconium, sponge, ≥99% trace metals basis
Sigma-Aldrich
Zirconium, rod, diam. 6.35 mm, ≥99% trace metals basis