Skip to Content
MilliporeSigma
  • Synthesis and evaluation of pteroic acid-conjugated nitroheterocyclic phosphoramidates as folate receptor-targeted alkylating agents.

Synthesis and evaluation of pteroic acid-conjugated nitroheterocyclic phosphoramidates as folate receptor-targeted alkylating agents.

Journal of medicinal chemistry (2001-01-05)
G Steinberg, R F Borch
ABSTRACT

A novel nitroheterocyclic bis(haloethyl)phosphoramidate prodrug linked through lysine to a pteroic acid has been prepared and evaluated as a potential alkylating agent to target tumor cells that overexpress the folate receptor. The prodrug exhibited IC(50) values in the micromolar range and was 10-400-fold less cytotoxic in vitro than the phosphoramidate that lacks the lysine-pteroyl moiety. The data does not support a contribution of the folate receptor to cytotoxicity. In an attempt to determine the basis for the decreased cytotoxicity in the pteroyl-lysyl analogue, compounds were prepared in which the lysine-pteroyl moiety was replaced with lysine alone or with an n-propyl group. The n-propyl and the lysyl analogues were on average 3.8- and 21-fold less potent than the unsubstituted bis(haloethyl)phosphoramidate, respectively. Chemical reduction of the prodrugs followed by (31)P NMR kinetics demonstrated that all of the phosphoramidate anions cyclized to the aziridinium ion at similar rates and gave comparable product distributions, suggesting that changes in chemical activation did not account for the differences in cytotoxicity. It is likely that folate receptor-mediated transport is not sufficient to deliver adequate intracellular concentrations of the cytotoxic phosphoramide mustard.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Pteroic acid, ≥93%
Folic acid impurity D, European Pharmacopoeia (EP) Reference Standard