- Modification of interdomain interfaces within the A3C1C2 subunit of factor VIII affects its stability and activity.
Modification of interdomain interfaces within the A3C1C2 subunit of factor VIII affects its stability and activity.
Factor (F)VIII consists of a heavy chain [A1(a1)A2(a2)B domains] and a light chain [(a3)A3C1C2 domains]. Several reports have shown significant changes in FVIII stability and/or activity following selected mutations at the A1-A2, A1-A3, A2-A3, and A1-C2 domain interfaces. In this study, the remaining inter-FVIII subunit interfaces (A3-C1 and C1-C2) were examined for their contributions to the stability and activity of FVIII and FVIIIa. We prepared FVIII mutants with nascent disulfide bridges between A3 and C1 domains (Gly1750Cys/Arg2116Cys and Ala1866Cys/Ser2119Cys) or C1 and C2 domains (Ser2029Cys/Pro2292Cys). We also prepared mutants via replacement of Arg2116 with hydrophobic residues (Ala and Val) because this C1 domain residue appears to face a pocket of positive electrostatic potential in the A3 domain. Stability was assessed following the rates of loss of FVIII activity at 55 °C and the spontaneous loss of FVIIIa activity from A2 subunit dissociation. FVIII Gly1750Cys/Arg2116Cys showed a marked increase in thermal stability (∼3.7-fold) compared with that of wild-type (WT) FVIII, while the stability of FVIII Ala1866Cys/Ser2119Cys was reduced (∼4.7-fold). Although the Ser2029Cys/Pro2292Cys variant showed a modest loss of FVIII stability, the specific activity and thrombin generation potential of this variant were increased (up to 1.2-fold) compared with those of WT. Furthermore, this variant demonstrated an ∼2-fold reduced Km for FX. Mutation of Arg2116 to hydrophobic residues resulted in variable decreases in stability and thrombin generation parameters, suggesting a role of this Arg residue contributing to FVIII structure. Taken together, selective modification of the contiguous domain interfaces in the FVIII light chain may improve FVIII stability and/or cofactor function.