- Fabrication and characterization of a zirconia/multi-walled carbon nanotube mesoporous composite.
Fabrication and characterization of a zirconia/multi-walled carbon nanotube mesoporous composite.
A zirconia/multi-walled carbon nanotube (ZrO2/MWCNT) mesoporous composite was fabricated via a simple method using a hydrothermal process with the aid of the cationic surfactant cetyltrimethylammonium bromide (CTAB). Transmission electron microscopy (TEM), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the as-made samples. The cubic ZrO2 nanocrystallites were observed to overlay the surface of MWCNTs, which resulted in the formation of a novel mesoporous-nanotube composite. On the basis of a TEM analysis of the products from controlled experiment, the role of the acid-treated MWCNTs and CTAB was proposed to explain the formation of the mesoporous-nanotube structure. The as-made composite possessed novel properties, such as a high surface area (312 m(2)·g(-1)) and a bimodal mesoporous structure (3.18 nm and 12.4 nm). It was concluded that this composite has important application value due to its one-dimensional hollow structure, excellent electric conductivity and large surface area.