Skip to Content
MilliporeSigma
  • Seawater ultrafiltration: role of particles on organic rejections and permeate fluxes.

Seawater ultrafiltration: role of particles on organic rejections and permeate fluxes.

Environmental technology (2014-02-18)
Anthony Massé, Hanh Nguyen Thi, Guillaume Roelens, Patrick Legentilhomme, Pascal Jaouen
ABSTRACT

The role of natural compounds of seawater and added particles on mechanisms of membrane fouling and organic matter rejection has been investigated. Ultrafiltration (100 kDa) has been conducted in both dead-end (out/in) and tangential (in/out) modes on polysulfone hollow fibre membranes. The permeate fluxes are approximately three times higher for tangential ultrafiltration than for dead-end ultrafiltration without differences between settled and non-settled seawaters (NS-SWs) (51-55 L h(-1) m(-2) for tangential and 17-22 L h(-1) m(-2) for dead-end ultrafiltration). Adding bentonite or kieselguhr from 0.13 to 1.13 g L(-1) of suspended solids to NS-SW does not act significantly on permeate fluxes of dead-end contrary to tangential ultrafiltration. For the latter, an addition of particles induces a slight drop of permeate fluxes. Original particles of reconstituted seawater could increase the cake porosity, whereas bentonite and kieselguhr, compounds smaller than original particles, could participate in the formation of a compact cake. The total organic carbon removal was equal to approximately 80% whatever the mode of ultrafiltration may be and the suspended solid concentration ranged from 0.13 to 1.13 g L(-1). Dissolved organic carbon (DOC) and colloidal organic carbon rejection rates were greater for tangential ultrafiltration (37-49%) compared with dead-end ultrafiltration (30-44%) at different concentrations of added particles. Bentonite or kieselguhr addition induced a slight decrease of DOC removal. In the case of particles addition, the worst DOC rejection is found for bentonite.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Nanoclay, hydrophilic bentonite
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, for gas purification, steam activated, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Celpure® P65, meets USP/NF testing specifications
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX ultra, from peat, corresponds U.S. Food chemicals codex (3rd Ed.), steam activated and acid washed, highly purified, powder
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Activated charcoal, powder, -100 particle size (mesh), decolorizing
Sigma-Aldrich
Celite® S, filter aid, dried, untreated
Sigma-Aldrich
Activated charcoal, untreated, granular, 8-20 mesh
Sigma-Aldrich
Activated charcoal, acid-washed with hydrochloric acid
Sigma-Aldrich
Activated charcoal, untreated, granular, ≤5 mm
Sigma-Aldrich
Activated charcoal, acid-washed with phosphoric and sulfuric acids
Sigma-Aldrich
Diatomaceous earth non-washed, powder
Sigma-Aldrich
Activated charcoal, untreated, granular, 20-60 mesh
Sigma-Aldrich
Activated Charcoal, meets USP testing specifications
Sigma-Aldrich
Bentonite
Sigma-Aldrich
Activated charcoal, DARCO®, 4-12 mesh particle size, granular
Sigma-Aldrich
Activated charcoal, DARCO®, 20-40 mesh particle size, granular
Sigma-Aldrich
Activated charcoal, Norit® ROW 0.8 SUPRA, pellets
Sigma-Aldrich
Activated charcoal, DARCO®, −100 mesh particle size, powder
Supelco
Activated charcoal, for the determination of AOX, 50-150 μm particle size
Sigma-Aldrich
Polysulfone, average Mw ~35,000 by LS, average Mn ~16,000 by MO, pellets (Transparent)
Supelco
Activated Charcoal Norit®, Norit® RBAA-3, rod
Supelco
Activated charcoal, powder
Supelco
Activated charcoal, puriss. p.a., powder
Sigma-Aldrich
Carbon, glassy, spherical powder, 2-12 μm, 99.95% trace metals basis
Sigma-Aldrich
Polysulfone, average Mn ~22,000 by MO, beads
Sigma-Aldrich
Activated charcoal, suitable for cell culture, suitable for plant cell culture