Skip to Content
MilliporeSigma

PVC membrane based potentiometric sensors for uranium determination.

Talanta (2008-10-31)
S S Hassan, M M Ali, A M Attawiya
ABSTRACT

Two novel uranyl PVC matrix membrane sensors responsive to uranyl ion are described. The first sensor incorporates tris(2-ethylhexyl)phosphate (TEHP) as both electroactive material and plasticizer and sodium tetraphenylborate (NaTPB) as an ion discriminator. The sensor displays a rapid and linear response for UO(2)(2+) ions over the concentration range 1x10(-1)-2x10(-5) mol l(-1) UO(2)(2+) with a cationic slope of 25.0+/-0.2 mV decade(-1). The working pH range is 2.8-3.6 and the life span is 4 weeks. The second sensor contains O-(1,2-dihydro-2-oxo-1-pyridyl)-N,N,N',N'-bis(tetra-methylene)uronium hexafluorophosphate (TPTU) as a sensing material, sodium tetraphenylborate as an ion discriminator and dioctyl phenylphosphonate (DOPP) as a plasticizer. Linear and stable response for 1x10(-1)-5x10(-5) mol l(-1) UO(2)(2+) with near-Nernstian slope of 27.5+/-0.2 mV decade(-1) are obtained. The working pH range is 2.5-3.5 and the life span of the sensor is 6 weeks. Interference from many inorganic cations is negligible for both sensors. However, interference caused by some ions (e.g. Th(4+), Cu(2+), Fe(3+)) is eliminated by a prior ion exchange or solvent extraction step. Direct potentiometric determination of as little as 5 mug ml(-1) uranium in aqueous solutions shows an average recovery of 97.2+/-1.3%. Application for the determination of uranium at levels of 0.01-1 wt.% in naturally occurring and certified ores gives results with good correlation with data obtained by X-ray fluorescence.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dioctyl phenylphosphonate, 95%