- Enhanced basal apoptosis in cultured term human cytotrophoblasts is associated with a higher expression and physical interaction of p53 and Bak.
Enhanced basal apoptosis in cultured term human cytotrophoblasts is associated with a higher expression and physical interaction of p53 and Bak.
We tested the hypothesis that the expression levels of p53 and the pro-apoptotic mediators from the Bcl-2 family are higher in cytotrophoblasts, when compared to cultures with abundant syncytiotrophoblasts. Cytotrophoblasts isolated from normal term human placentas were cultured in Dulbecco's Modified Eagle medium (DMEM) for 24 h, when the cytotrophoblast phenotype predominates, in DMEM for 72 h, when the syncytiotrophoblast phenotype predominates, or in Ham's-Waymouth medium or DMEM with 1.5% dimethylsulfoxide, each of which maintains the cytotrophoblast phenotype through 72 h of culture. Apoptosis was assessed by detection of cleavage products of poly-ADP-ribose polymerase, by expression of cleaved cytokeratin 18 intermediate filaments, and by assessment of caspase-3 activity. Independent of time in culture, cytotrophoblasts showed higher levels of apoptosis compared to syncytiotrophoblasts. Cytotrophoblasts also expressed a 2-fold higher level of p53, a 2-fold lower level of 60 kDa Mdm-2 protein, a 2-fold higher level of Bak, but no differences in the expression of 90 kDa Mdm-2, Bcl-2, Bcl-X(L), Mcl-1, Bax, Bad, and Bad phosphorylated at the serine(112), serine(136), or serine(155) sites, compared to the syncytiotrophoblasts. Using co-immunoprecipitation, we demonstrated a greater degree of Bak-p53 interaction in cytotrophoblasts than in syncytiotrophoblasts. We also detected Bak-Mcl-1 interaction that was no different between the two phenotypes. Among the proteins studied, enhanced p53 activity, differential Bak expression, and Bak-p53 interactions may contribute to the higher level of constitutive apoptosis in cultures of cytotrophoblasts compared to syncytiotrophoblasts.