Skip to Content
MilliporeSigma
  • Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization.

Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization.

The Journal of biological chemistry (2003-10-18)
Mark A Gregory, Ying Qi, Stephen R Hann
ABSTRACT

The c-Myc protein is a transcription factor that is a central regulator of cell growth and proliferation. Thr-58 is a major phosphorylation site in c-Myc and is a mutational hotspot in Burkitt's and other aggressive human lymphomas, indicating that Thr-58 phosphorylation restricts the oncogenic potential of c-Myc. Mutation of Thr-58 is also associated with increased c-Myc protein stability. Here we show that inhibition of glycogen synthase kinase-3 (GSK-3) activity with lithium increases c-Myc stability and inhibits phosphorylation of c-Myc specifically at Thr-58 in vivo. Conversely, overexpression of GSK-3 alpha or GSK-3 beta enhances Thr-58 phosphorylation and ubiquitination of c-Myc. Together, these observations suggest that phosphorylation of Thr-58 mediated by GSK-3 facilitates c-Myc rapid proteolysis by the ubiquitin pathway. Furthermore, we demonstrate that GSK-3 binds c-Myc in vivo and in vitro and that GSK-3 colocalizes with c-Myc in the nucleus, strongly arguing that GSK-3 is the c-Myc Thr-58 kinase. We found that c-MycS, which lacks the N-terminal 100 amino acids of c-Myc, is unable to bind GSK-3; however, mutation of Ser-62, the priming phosphorylation site necessary for Thr-58 phosphorylation, does not disrupt GSK-3 binding. Finally, we show that Thr-58 phosphorylation alters the subnuclear localization of c-Myc, enhancing its localization to discrete nuclear bodies together with GSK-3.