- Formulation and evaluation of tacrolimus-loaded galactosylated Poly(lactic-co-glycolic acid) nanoparticles for liver targeting.
Formulation and evaluation of tacrolimus-loaded galactosylated Poly(lactic-co-glycolic acid) nanoparticles for liver targeting.
The aim of this investigation was to formulate liver targeted tacrolimus-loaded nanoparticles for reducing renal distribution and thereby decreasing nephrotoxicity. Poly lactic-co-glycolic acid (PLGA) was galactosylated, and confirmation of galactosylation was performed by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Tacrolimus-loaded PLGA nanoparticles (Tac-PLGA NP) and galactosylated PLGA nanoparticles (Tac-Gal-PLGA NPs) were prepared by ultrasonic emulsification solvent evaporation technique and characterized. The size of both the formulations was below 150 nm and negative zeta potential indicated the stability and reticuloendothelial system targeting efficiency. The in-vitro release and pharmacokinetics showed sustained release of tacrolimus from nanoparticles in comparison to plain drug solution. The biodistribution studies revealed the potential of both the nanoparticulate systems to target tacrolimus to the liver for prolonged periods of time compared with the plain drug solution. However, significantly higher liver and spleen targeting efficiency of Tac-Gal-PLGA NPs compared with Tac-PLGA NPs was evident indicating its active targeting. Significantly lower distribution in the kidney from nanoparticles indicated the possibility of reduced nephrotoxicity - the principal reason for patient non-compliance. Both nanoparticles showed stability at refrigerated condition (5°C ± 3°C) upon storage for 1 month. Galactosylated PLGA nanoparticles seem to be a promising carrier for liver targeting of tacrolimus.