Skip to Content
MilliporeSigma
  • Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid.

Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid.

International journal of food microbiology (2015-06-13)
S Van Haute, F López-Gálvez, V M Gómez-López, Markus Eriksson, F Devlieghere, Ana Allende, I Sampers
ABSTRACT

A methodology to i) assess the feasibility of water disinfection in fresh-cut leafy greens wash water and ii) to compare the disinfectant efficiency of water disinfectants was defined and applied for a combination of peracetic acid (PAA) and lactic acid (LA) and comparison with free chlorine was made. Standardized process water, a watery suspension of iceberg lettuce, was used for the experiments. First, the combination of PAA+LA was evaluated for water recycling. In this case disinfectant was added to standardized process water inoculated with Escherichia coli (E. coli) O157 (6logCFU/mL). Regression models were constructed based on the batch inactivation data and validated in industrial process water obtained from fresh-cut leafy green processing plants. The UV254(F) was the best indicator for PAA decay and as such for the E. coli O157 inactivation with PAA+LA. The disinfection efficiency of PAA+LA increased with decreasing pH. Furthermore, PAA+LA efficacy was assessed as a process water disinfectant to be used within the washing tank, using a dynamic washing process with continuous influx of E. coli O157 and organic matter in the washing tank. The process water contamination in the dynamic process was adequately estimated by the developed model that assumed that knowledge of the disinfectant residual was sufficient to estimate the microbial contamination, regardless the physicochemical load. Based on the obtained results, PAA+LA seems to be better suited than chlorine for disinfecting process wash water with a high organic load but a higher disinfectant residual is necessary due to the slower E. coli O157 inactivation kinetics when compared to chlorine.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium Thiosulfate Solution, 2 g/dL in deionized water
Sigma-Aldrich
Sodium thiosulfate solution, 0.1 M
Sigma-Aldrich
Sodium thiosulfate solution, 0.025 M
Sigma-Aldrich
Sodium thiosulfate solution, 0.01 M
Sigma-Aldrich
Sodium thiosulfate solution, 1 M
Sigma-Aldrich
Sodium thiosulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Nalidixic acid, ≥98%