Skip to Content
MilliporeSigma
  • Differentiation of human neuroblastoma cells toward the osteogenic lineage by mTOR inhibitor.

Differentiation of human neuroblastoma cells toward the osteogenic lineage by mTOR inhibitor.

Cell death & disease (2015-11-13)
A Carpentieri, E Cozzoli, M Scimeca, E Bonanno, A M Sardanelli, A Gambacurta
ABSTRACT

Current hypothesis suggest that tumors can originate from adult cells after a process of 'reprogramming' driven by genetic and epigenetic alterations. These cancer cells, called cancer stem cells (CSCs), are responsible for the tumor growth and metastases. To date, the research effort has been directed to the identification, isolation and manipulation of this cell population. Independently of whether tumors were triggered by a reprogramming of gene expression or seeded by stem cells, their energetic metabolism is altered compared with a normal cell, resulting in a high aerobic glycolytic 'Warburg' phenotype and dysregulation of mitochondrial activity. This metabolic alteration is intricately linked to cancer progression.The aim of this work has been to demonstrate the possibility of differentiating a neoplastic cell toward different germ layer lineages, by evaluating the morphological, metabolic and functional changes occurring in this process. The cellular differentiation reported in this study brings to different conclusions from those present in the current literature. We demonstrate that 'in vitro' neuroblastoma cancer cells (chosen as experimental model) are able to differentiate directly into osteoblastic (by rapamycin, an mTOR inhibitor) and hepatic lineage without an intermediate 'stem' cell step. This process seems owing to a synergy among few master molecules, metabolic changes and scaffold presence acting in a concerted way to control the cell fate.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Adenosine 5′-triphosphate (ATP) bioluminescent somatic cell assay kit, for cellular ATP determination
Sigma-Aldrich
Anti-IDH2 antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-IDH1 antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-MDM2 (Ab-5) Mouse mAb (4B2C1.11), liquid, clone 4B2C1.11, Calbiochem®