Skip to Content
MilliporeSigma

ZP3 is Required for Germinal Vesicle Breakdown in Mouse Oocyte Meiosis.

Scientific reports (2017-02-02)
Lei-Lei Gao, Chun-Xiang Zhou, Xiao-Lan Zhang, Peng Liu, Zhen Jin, Gang-Yi Zhu, Yang Ma, Jing Li, Zhi-Xia Yang, Dong Zhang
ABSTRACT

ZP3 is a principal component of the zona pellucida (ZP) of mammalian oocytes and is essential for normal fertility, and knockout of ZP3 causes complete infertility. ZP3 promotes fertilization by recognizing sperm binding and activating the acrosome reaction; however, additional cellular roles for ZP3 in mammalian oocytes have not been yet reported. In the current study, we found that ZP3 was strongly expressed in the nucleus during prophase and gradually translocated to the ZP. Knockdown of ZP3 by a specific siRNA dramatically inhibited germinal vesicle breakdown (GVBD) (marking the beginning of meiosis), significantly reducing the percentage of MII oocytes. To investigate the ZP3-mediated mechanisms governing GVBD, we identified potential ZP3-interacting proteins by immunoprecipitation and mass spectrometry. We identified Protein tyrosine phosphatase, receptor type K (Ptprk), Aryl hydrocarbon receptor-interacting protein-like 1 (Aipl1), and Diaphanous related formin 2 (Diaph2) as potential candidates, and established a working model to explain how ZP3 affects GVBD. Finally, we provided preliminary evidence that ZP3 regulates Akt phosphorylation, lamin binding to the nuclear membrane via Aipl1, and organization of the actin cytoskeleton via Diaph2. These findings contribute to our understanding of a novel role played by ZP3 in GVBD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-ZP3 antibody produced in rabbit, IgG fraction of antiserum
Sigma-Aldrich
Anti-AKT antibody produced in rabbit, affinity isolated antibody