コンテンツへスキップ
Merck

β2M Signals Monocytes Through Non-Canonical TGFβ Receptor Signal Transduction.

Circulation research (2021-01-30)
Zachary T Hilt, Preeti Maurya, Laura Tesoro, Daphne N Pariser, Sara K Ture, Simon J Cleary, Mark R Looney, Kathleen E McGrath, Craig N Morrell
要旨

Circulating monocytes can have proinflammatory or proreparative phenotypes. The endogenous signaling molecules and pathways that regulate monocyte polarization in vivo are poorly understood. We have shown that platelet-derived β2M (β-2 microglobulin) and TGF-β (transforming growth factor β) have opposing effects on monocytes by inducing inflammatory and reparative phenotypes, respectively, but each bind and signal through the same receptor. We now define the signaling pathways involved. To determine the molecular mechanisms and signal transduction pathways by which β2M and TGF-β regulate monocyte responses both in vitro and in vivo. Wild-type- (WT) and platelet-specific β2M knockout mice were treated intravenously with either β2M or TGF-β to increase plasma concentrations to those in cardiovascular diseases. Elevated plasma β2M increased proinflammatory monocytes, while increased plasma TGFβ increased proreparative monocytes. TGF-βR (TGF-β receptor) inhibition blunted monocyte responses to both β2M and TGF-β in vivo. Using imaging flow cytometry, we found that β2M decreased monocyte SMAD2/3 nuclear localization, while TGF-β promoted SMAD nuclear translocation but decreased noncanonical/inflammatory (JNK [jun kinase] and NF-κB [nuclear factor-κB] nuclear localization). This was confirmed in vitro using both imaging flow cytometry and immunoblots. β2M, but not TGF-β, promoted ubiquitination of SMAD3 and SMAD4, that inhibited their nuclear trafficking. Inhibition of ubiquitin ligase activity blocked noncanonical SMAD-independent monocyte signaling and skewed monocytes towards a proreparative monocyte response. Our findings indicate that elevated plasma β2M and TGF-β dichotomously polarize monocytes. Furthermore, these immune molecules share a common receptor but induce SMAD-dependent canonical signaling (TGF-β) versus noncanonical SMAD-independent signaling (β2M) in a ubiquitin ligase dependent manner. This work has broad implications as β2M is increased in several inflammatory conditions, while TGF-β is increased in fibrotic diseases. Graphic Abstract: A graphic abstract is available for this article.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
リポポリサッカリド 大腸菌055:B5由来, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
TGF-β RI Kinase Inhibitor VI, SB431542, TGF-β RI Kinase Inhibitor VI, SB431542, CAS 301836-41-9, is a cell-permeable inhibitor of SMAD2 phosphorylation. Inhibits the activity of ALK4 and ALK5 (IC₅₀ = 140 nM and 94 nM, respectively).