추천 제품
설명
Band gap: Eg = 3.05 eV (lit)
Hole Mobility: 5.5 x 10-5 cm2/Vs (lit)
분석
≥98%
양식
powder
색상
yellow
전도도
1.9 x 10-4 S/cm (lit)
오비탈 에너지
HOMO -5.15 eV
LUMO -2.10 eV
SMILES string
N(c%10ccc(cc%10)OC)(c9ccc(cc9)OC)c1cc2c(cc1)c3c(cc(cc3)N(c8ccc(cc8)OC)c7ccc(cc7)OC)C42c5c(cccc5)Oc6c4cccc6
InChI key
PDGJIZDXBRVKBB-UHFFFAOYSA-N
일반 설명
Spiro[9H-fluorene-9,9′-[9H]xanthene]-2,7-diamine (X59) is a hole transporting material (HTM), which has a spiro[fluorene-9,9′-xanthene] as a core component. It can be synthesized by Buchwald-Hartwig reaction. It shows a power conversion efficiency (PCE) of 19.8%.
애플리케이션
X59 can be used in the formation of hole transporting layer (HTL) for the fabrication of polymeric solar cells (PSCs) and perovskite solar cells.
X59 is a new hole transporting material (HTM) with spiro[fluorene-9,9′-xanthene] as the core moiety. An impressive power conversion efficiency (PCE) of 19.8% was achieved by using X59 as HTM in perovskite solar cell, which can compete with the record PCE by using the state-of-the-art-HTM Spiro-OMeTAD. The X59-based devices show negligible hysteresis and reasonable stability in dark and dry conditions at room temperature for over five weeks.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
가장 최신 버전 중 하나를 선택하세요:
Strategy to modulate the pi-bridged units in bis (4-methoxyphenyl) amine-based hole-transporting materials for improvement of perovskite solar cell performance.
Journal of Material Chemistry C, 6(25), 6816-6822 (2018)
Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%
Nano Energy, 23, 138-144 (2016)
Highly efficient and stable planar CsPbI2Br perovskite solar cell with a new sensitive-dopant-free hole transport layer obtained via an effective surface passivation.
Solar Energy Materials and Solar Cells, 201(25), 110052-110052 (2019)
Rational design of bis(4-methoxyphenyl)amine-based molecules with different p-bridges as hole-transporting materials for efficient perovskite solar cells
Dyes and Pigments, 139, 283-291 (2017)
문서
Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.