추천 제품
애플리케이션
Lead bromide finds application in synthesis of perovksites based photovoltaic materials. Our perovskite grade PbBr2 can readily be dissolved in DMF: DMSO (1:1) to yield 1M solution.
Lead(II) Bromide is a key component in the fabrication of the perovskite absorber layer in perovskite solar cells. It is commonly combined with other metal halides, such as methylammonium lead triiodide (MAPbI3), to form the perovskite structure. The high purity level and trace metal basis of the material contribute to the efficiency and stability of the resulting solar cells.
포장
5 g in ampule
법적 정보
AnhydroBeads is a trademark of Sigma-Aldrich Co. LLC
신호어
Danger
유해 및 위험 성명서
Hazard Classifications
Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Repr. 1A - STOT RE 2
Storage Class Code
6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
가장 최신 버전 중 하나를 선택하세요:
시험 성적서(COA)
Advances in Functional Materials, 25, 6936-6936 (2015)
Nature nanotechnology, 10(5), 391-402 (2015-05-08)
Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in
문서
To achieve net-zero emissions by 2050, renewable power contributions must triple. Photovoltaic stations provide vital utility power, achieved primarily through third- and fourth-generation technology. Promising trends include recycling and revolutionary, ultra-lightweight, flexible, and printable solar cells.
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.