콘텐츠로 건너뛰기
Merck
  • Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs.

Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs.

The Science of the total environment (2014-07-06)
Hidenori Matsukami, Tomohiro Kose, Mafumi Watanabe, Hidetaka Takigami
초록

Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, <0.01-0.048 μg m(-3) and <0.5-68 μg kg(-1). Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of OPFRs and unintentional POPs. Incineration is regarded as a best available technology (BAT) for waste management systems.

MATERIALS
제품 번호
브랜드
제품 설명

Supelco
N,O-Bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane, for GC derivatization, LiChropur, contains 1% TMCS, 99% (excluding TMCS)
Supelco
N,O-Bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane, for GC derivatization, LiChropur, contains 10% TMCS, 98% (excluding TMCS)
Supelco
N,O-Bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane, with 1% trimethylchlorosilane, for GC derivatization, LiChropur
Sigma-Aldrich
N,O-Bis(trimethylsilyl)trifluoroacetamide, ≥99%
Supelco
N,O-Bis(trimethylsilyl)trifluoroacetamide, for GC derivatization, LiChropur, ≥99.0%
Supelco
Metolachlor OA, PESTANAL®, analytical standard