MilliporeSigma
All Photos(4)

181994

Sigma-Aldrich

Poly(ethylene oxide)

average Mv 200,000 (nominal), powder

Synonym(s):
PEO
Linear Formula:
(-CH2CH2O-)n
CAS Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

form

powder

Quality Level

mol wt

average Mv 200,000 (nominal)

contains

200-500 ppm BHT as inhibitor

viscosity

65-115 cP, 5 % in H2O(25 °C, Brookfield)(lit.)

transition temp

Tm 65 °C

Ω-end

hydroxyl

α-end

hydroxyl

application(s)

battery manufacturing

SMILES string

[H]OCCO

InChI

1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2

InChI key

LYCAIKOWRPUZTN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
189456181986372781
Poly(ethylene oxide) average Mv 200,000 (nominal), powder

Sigma-Aldrich

181994

Poly(ethylene oxide)

Poly(ethylene oxide) average Mv ~900,000 (nominal), powder

Sigma-Aldrich

189456

Poly(ethylene oxide)

Poly(ethylene oxide) average Mv 100,000 (nominal), powder

Sigma-Aldrich

181986

Poly(ethylene oxide)

Poly(ethylene oxide) average Mv ~1,000,000 (nominal), powder

Sigma-Aldrich

372781

Poly(ethylene oxide)

mol wt

average Mv 200,000 (nominal)

mol wt

average Mv ~900,000 (nominal)

mol wt

average Mv 100,000 (nominal)

mol wt

average Mv ~1,000,000 (nominal)

transition temp

Tm 65 °C

transition temp

Tm 65 °C

transition temp

Tg −67 °C, Tm 65 °C

transition temp

-

Ω-end

hydroxyl

Ω-end

-

Ω-end

hydroxyl

Ω-end

-

α-end

hydroxyl

α-end

-

α-end

hydroxyl

α-end

-

contains

200-500 ppm BHT as inhibitor

contains

200-500 ppm BHT as inhibitor

contains

200-500 ppm BHT as inhibitor

contains

200-500 ppm BHT as inhibitor

General description

Poly(ethylene oxide) (PEO) is a synthetichydrophilic polymer available in several molecular weights. It can be obtained by the ring-opening polymerization ofethylene oxide. It is a semicrystalline polymer with high ionic conductivitycommonly used as a solid polymer electrolyte.

Application

Poly(ethylene oxide) can be used to prepare polymer electrolyte systems for energy storage and conversion devices such as all-solid-state lithium-ion batteries (ASLBs).

This biocompatible polymer can be widely used in the field of biomedical research and tissue engineering. For example, it can be used in the fabrication of biodegradable polyurethane/graphene oxide scaffolds.

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (Example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

I L Konorova et al.
Patologicheskaia fiziologiia i eksperimental'naia terapiia, (4)(4), 7-9 (1991-07-01)
The search for antiaggregatory compounds is undertaken, as a rule, under in vitro conditions which do not reflect the dynamics of the real process. The present work deals with study of the peculiarities of the development of the collagen induced
P I Polimeni et al.
Journal of cardiovascular pharmacology, 14(3), 374-380 (1989-09-01)
The acute hemodynamic effects of an intravenously (i.v.) injected poly(ethylene oxide), Polyox WSR N-60K (dose 50 mg/kg), were studied in the open-chest rat anesthetized with sodium pentobarbital. The injectate is one of four drag-reducing polymers known to augment in vitro
M Patel Geeta et al.
Current drug delivery, 6(2), 159-165 (2009-05-20)
Carbamazepine indicated for the control of epilepsy, undergoes extensive hepatic first-pass metabolism after oral administration. A vaginal dosage form of carbamazepine is not commercially available. Conventional suppository having poor retention in the vaginal tract, as they are removed in a
D D Smyth et al.
Cardiovascular drugs and therapy, 4(1), 297-300 (1990-02-01)
Previous studies have demonstrated that Separan AP-30, a drag-reducing polymer, significantly decreased the formation of atherosclerotic plaques in rabbits fed a high-cholesterol diet. Furthermore, Separan AP-273, a polymer similar to but longer than Separan AP-30, markedly increased cardiac output in

Articles

Degradable Poly(ethylene glycol) Hydrogels for 2D and 3D Cell Culture

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Versatile Cell Culture Scaffolds via Bio-orthogonal Click Reactions

Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service