254290
Lithium niobate
99.9% trace metals basis
Synonym(s):
Lithium metaniobatem, Lithium niobium oxide, Lithium niobium trioxide
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Recommended Products
Quality Level
assay
99.9% trace metals basis
form
powder
reaction suitability
core: niobium
reagent type: catalyst
particle size
200 mesh
SMILES string
[Li+].[O-][Nb](=O)=O
InChI
1S/Li.Nb.3O/q+1;;;;-1
InChI key
GQYHUHYESMUTHG-UHFFFAOYSA-N
Storage Class
11 - Combustible Solids
wgk_germany
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Molecules (Basel, Switzerland), 26(3) (2021-01-29)
We report on the use of quartz-enhanced photoacoustic spectroscopy for continuous carbon-dioxide measurements in humid air over a period of six days. The presence of water molecules alters the relaxation rate of the target molecules and thus the amplitude of
Optics express, 20(21), 23623-23629 (2012-11-29)
In recent years, the development of new lithium niobate electro-optic modulator designs and material processing techniques have contributed to support the increasing need for faster optical networks by considerably extending the operational bandwidth of modulators. In an effort to provide
An all-optical technique enables instantaneous single-shot demodulation of images at high frequency.
Nature communications, 11(1), 549-549 (2020-01-30)
High-frequency demodulation of wide area optical signals in a snapshot manner remains a technological challenge. If solved, it could open tremendous perspectives in 3D imaging, vibrometry, free-space communications, automated vision, or ballistic photon imaging in scattering media with numerous applications
Polymers, 11(7) (2019-07-03)
In the present work, poly(vinylidene fluoride) (PVDF) films were produced by spin-coating, and applying different conditions of quenching, in order to investigate the dominant mechanism of the β-phase formation. The influence of the polymer/solvent mass ratio of the solution, the
Advanced materials (Deerfield Beach, Fla.), 31(48), e1902890-e1902890 (2019-10-08)
Domain wall nanoelectronics is a rapidly evolving field, which explores the diverse electronic properties of the ferroelectric domain walls for application in low-dimensional electronic systems. One of the most prominent features of the ferroelectric domain walls is their electrical conductivity.
Articles
Synthesis, Properties, and Applications of Perovskite-Phase Metal Oxide Nanostructures
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service