Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

339164

Sigma-Aldrich

Bis(cyclopentadienyl)cobalt(II)

Synonym(s):

Cobaltocene

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Co(C5H5)2
CAS Number:
Molecular Weight:
189.12
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

form

powder or crystals
solid

reaction suitability

core: cobalt

mp

176-180 °C (dec.) (lit.)

storage temp.

2-8°C

SMILES string

[Co].[CH]1[CH][CH][CH][CH]1.[CH]2[CH][CH][CH][CH]2

InChI

1S/2C5H5.Co/c2*1-2-4-5-3-1;/h2*1-5H;

InChI key

PXFGMRZPRDJDEK-UHFFFAOYSA-N

General description

Bis(cyclopentadienyl)cobalt(II) also known as cobaltocene, is an organometalliccompound that is widely used in the field of polymer synthesis, cobaltnanomaterials, and redox flow batteries.

Application

Bis(cyclopentadienyl)cobalt(II) can be used:
  • As a dopant to prepare encapsulated carbon nanotubes with high thermoelectric conversion efficiency.
  • As a CVD precursor to fabricate cobalt oxide thin films for various applications.
  • As a redox-active anode species in Li-based redox flow batteries to achieve higher energy densities and energy efficiencies.
  • As a catalyst for controlled/“living” radical polymerization of methylmethacrylate.

pictograms

FlameHealth hazard

signalword

Danger

Hazard Classifications

Carc. 2 - Flam. Sol. 2 - Muta. 2 - Resp. Sens. 1 - Skin Sens. 1

Storage Class

4.1B - Flammable solid hazardous materials

wgk_germany

WGK 3

ppe

Eyeshields, Gloves, type P3 (EN 143) respirator cartridges


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A high-performance all-metallocene-based, non-aqueous redox flow battery
Yu Ding, et al.
Energy & Environmental Science, 10, 491-497 (2017)
F Li et al.
Chemical science, 9(30), 6379-6389 (2018-10-13)
A series of NO-bound, iron-functionalized polyoxovanadate-alkoxide (FePOV-alkoxide) clusters have been synthesized, providing insight into the role of multimetallic constructs in the coordination and activation of a substrate. Upon exposure of the heterometallic cluster to NO, the vanadium-oxide metalloligand is oxidized
Jacob M Clary et al.
Nanotechnology, 31(17), 175703-175703 (2020-01-09)
Highly dispersed cobalt atoms were deposited on porous alumina particles using atomic layer deposition (ALD) with a CoCp2/H2 chemistry at approximately 7 wt%. H2 did not completely reduce the cyclopentadienyl organic ligands bound to deposited Co atoms at ALD reaction
Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property
Takahiro Fukumaru, et al.
Scientific Reports, 5, 7951-7951 (2015)
Rachel L Meyer et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 26(44), 9905-9914 (2020-03-21)
The rational control of the electrochemical properties of polyoxovanadate-alkoxide clusters is dependent on understanding the influence of various synthetic modifications on the overall redox processes of these systems. In this work, the electronic consequences of ligand substitution at the heteroion

Articles

Atomic layer deposition meets various needs including semiconductor device miniaturization and nanoparticle coating.

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

Spintronics offer breakthroughs over conventional memory/logic devices with lower power, leakage, saturation, and complexity.

Ultrasonic spray pyrolysis produces scalable nanomaterials like metal oxides and quantum dots for diverse applications.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service