Skip to Content
MilliporeSigma
All Photos(3)

Documents

370959

Sigma-Aldrich

Lignin, alkali

Sign Into View Organizational & Contract Pricing

Synonym(s):
Lignin, kraft
CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23

description

surface tension 43 mN/m (1% aqueous)

Quality Level

form

powder

impurities

5% moisture

loss

13.4 wt. % loss on heating, @ 316°C
3.3 wt. % loss on heating, @ 149°C
5.7 wt. % loss on heating, @ 204°C
8.5 wt. % loss on heating, @ 260°C

pH

6.5 (25 °C, 5%, aqueous solution)

transition temp

sintering point 188 °C

solubility

NaOH: 0.05% (warm 5% aquesous)
MEK: partially soluble
benzene: insoluble
dioxane: soluble
ethylene glycol: soluble
hexane: insoluble
methanol: partially soluble

density

1.3 g/mL at 25 °C

bulk density

23 lb/cu.ft (loose)
32 lb/cu.ft (packed)

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Lignin, alkali is a complex, three dimensional polymer that is also known as kraft lignin that has undergone hydrolytic degradation. It is one of the major components of lignocellulosic materials. Lignin is a major product for second generation bioethanol production and is an impurity in the separation of cellulose from wood.

Application

Lignin, alkali can be used as a surface treatment agent for composites of natural fibers with petroleum based resins. It can be used as a biosorbent for potential applications in removing toxic metal ions from wastewater.

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Novel applications of lignin in composite materials
Thielemans W, et al.
Journal of Applied Polymer Science, 83(2), 323-331 (2002)
Shangxian Xie et al.
Advanced science (Weinheim, Baden-Wurttemberg, Germany), 6(13), 1801980-1801980 (2019-08-06)
Bacterial protein secretion represents a significant challenge in biotechnology, which is essential for the cost-effective production of therapeutics, enzymes, and other functional proteins. Here, it is demonstrated that proteomics-guided engineering of transcription, translation, secretion, and folding of ligninolytic laccase balances
Aiguo Wang et al.
Bioresource technology, 268, 505-513 (2018-08-17)
Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation without solvent was investigated over Zn-Ga modified zeolite catalyst. The co-loading of Zn and Ga greatly improves lignin conversion, arene yield along with BTEX (i.e., benzene, toluene
Tanja Berger et al.
Folia microbiologica, 66(1), 87-98 (2020-09-26)
The potential of the culturable bacterial community from an Alpine coniferous forest site for the degradation of organic polymers and pollutants at low (5 °C) and moderate (20 °C) temperatures was evaluated. The majority of the 68 strains belonged to
Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin
Braun JL, et al.
Carbon, 43(2), 385-394 (2005)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service