MilliporeSigma
All Photos(2)

700339

Sigma-Aldrich

Titanium(IV) oxide, mixture of rutile and anatase

nanoparticles, <100 nm particle size, dispersion, 48-52 wt. % in xylene, 99.9% trace metals basis

Synonym(s):
Titanium dioxide
Linear Formula:
TiO2
CAS Number:
Molecular Weight:
79.87
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Assay

99.9% trace metals basis

form

dispersion
nanoparticles

concentration

48-52 wt. % in xylene

particle size

<100 nm
~30 nm (primary particle size of starting nanopowder)

bp

>135 °C

SMILES string

O=[Ti]=O

InChI

1S/2O.Ti

InChI key

GWEVSGVZZGPLCZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Crystal phase: anatase/rutile mixture (ca. 80:20)

Signal Word

Danger

Hazard Classifications

Aquatic Chronic 3 - Asp. Tox. 1 - Eye Dam. 1 - Flam. Liq. 3 - Skin Corr. 1B - STOT RE 2 Inhalation - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(C)

27 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (Example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 6

1 of 6

Titanium dioxide nanotubes, 25&#160;nm average diameter, powder

Sigma-Aldrich

799289

Titanium dioxide

Titanium(IV) oxide nanowires, diam. × L ~100&#160;nm × 10&#160;&#956;m

Sigma-Aldrich

774510

Titanium(IV) oxide

Titanium dioxide NIST&#174; RM 8988, powder, particle size distribution

NISTRM8988

Titanium dioxide

Titanium dioxide NIST&#174; SRM&#174; 1898, nanomaterial

NIST1898

Titanium dioxide

Suxin Gui et al.
Journal of agricultural and food chemistry, 61(37), 8959-8968 (2013-08-24)
TiO₂ nanoparticles (NPs) are used in the food industry but have potential toxic effects in humans and animals. TiO₂ NPs impair renal function and cause oxidative stress and renal inflammation in mice, associated with inhibition of nuclear factor erythroid-2-related factor
D Minetto et al.
Environment international, 66, 18-27 (2014-02-11)
The innovative properties of nanomaterials make them suitable for various applications in many fields. In particular, TiO2 nanoparticles (nTiO2) are widely used in paints, in cosmetics and in sunscreens that are products accessible to the mass market. Despite the great
Roberta Tassinari et al.
Nanotoxicology, 8(6), 654-662 (2013-07-10)
The study explored possible reproductive and endocrine effects of short-term (5 days) oral exposure to anatase TiO2 nanoparticles (0, 1, 2 mg/kg body weight per day) in rat. Nanoparticles were characterised by scanning electron microscopy (SEM) and transmission electron microscopy
Susan C Tilton et al.
Nanotoxicology, 8(5), 533-548 (2013-05-11)
The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect
Alessia D'Agata et al.
Nanotoxicology, 8(5), 549-558 (2013-05-24)
Marine bivalves (Mytilus galloprovincialis) were exposed to titanium dioxide (10 mg L(-1)) either as engineered nanoparticles (nTiO2; fresh, or aged under simulated sunlight for 7 days) or the bulk equivalent. Inductively coupled plasma-optical emission spectrometry analyses of mussel tissues showed

Articles

Efficient dye-sensitized solar cells for direct conversion of sunlight to electricity

Dye-sensitized solar cells directly convert sunlight to electricity

Organic Dyes for Efficient and Stable Dye-Sensitized Solar Cells

Over the last decade, dye-sensitized solar cells (DSSCs) have attracted much attention because these unconventional solar cells exhibit high performance and have the potential for low-cost production.

Synthesis of ZnO Aggregates and Their Application in Dye-Sensitized Solar Cells

One of the more traditional photovoltaic devices, single crystalline silicon solar cells were invented more than 50 years ago, currently make up 94% of the market. Single crystalline silicon solar cells operate on the principle of p-n junctions formed by joining p-type and n-type semiconductors.

Few Monolayer Atomic Layer Deposition (ALD) on Surfaces and Interfaces for Energy Applications

Few Monolayer Atomic Layer Deposition (ALD) on Surfaces and Interfaces for Energy Applications

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service