MilliporeSigma
All Photos(2)

Documents

765198

Sigma-Aldrich

Lithium manganese nickel oxide

greener alternative

electrode sheet, aluminum substrate, size 5 in. × 10 in.

Sign Into View Organizational & Contract Pricing

Synonym(s):
LMNO, Lithium nickel manganate
Linear Formula:
Li2Mn3NiO8
MDL number:
PubChem Substance ID:
NACRES:
NA.23

grade

battery grade

description

Nominal Voltage: 4.7 V, Li/Li+

assay

≥98%

form

solid

composition

loading, ≥80%

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

extent of labeling

≥80% loading

size

5 in. × 10 in.

thickness

25-50 μm

particle size

4-7 μm (typical)

capacity

115 mAh/g(minimum)
125 mAh/g(nominal at 0.1C)

mp

>1000 °C

application(s)

battery manufacturing

greener alternative category

SMILES string

[Li+].[Li+].[O-][Mn]=O.[O-][Ni]=O.O=[Mn]=O.O=[Mn]=O

InChI

1S/2Li.3Mn.Ni.8O/q2*+1;;;;;;;;;;;2*-1

InChI key

NTWFBJKNXFUJHM-UHFFFAOYSA-N

General description

Lithium manganese nickel oxide (LMNO) is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

LMNO is a spinel cathode material that has a storage capacity greater than 200 mAhg−1 at a voltage around 4.7 V. It has a high irreversible capacity due to its inherent property to self-discharge. LMNO can be used in the fabrication of high-performance lithium-ion batteries.
LMNO is cathode material with good electrochemical performance for high power and high energy density Lithium ion batteries. LMNO can can intercalate Li reversibly at a high voltages.

The LMNO casted electrode sheets can be cut into appropriate size and is ready to be used in lithium ion batteries.

Other Notes

Crystal Structure: Cubic

Operating Condiditons:
  • Recommended maximum charge voltage: 5.0 V vs Li/Li+
  • Recommended maximum charge current: 5 C
  • Recommended cut-off voltage for discharge: 3.5 V vs Li/Li+
  • Recommended maximum discharge current: 5 C
  • Recommended charge method: constant current - constant voltage

pictograms

Exclamation markHealth hazard

signalword

Warning

Hazard Classifications

Carc. 2 - Skin Sens. 1

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 1

1 of 1

Liu, D.; et al.
Journal of Power Sources, 204, 127-127 (2012)
Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries
Park S-H, et al.
Electrochemical Communications, 9(2), 262-268 (2007)
Markovsky, B.; et al.
Electrochemical Communications, 6, 821-821 (2004)
Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS
Baggetto L, et al.
Electrochimica Acta, 90, 135-147 (2013)
High capacity lithium-manganese-nickel-oxide composite cathodes with low irreversible capacity loss and good cycle life for lithium ion batteries
Zhang J, et al.
Science China: Chemistry, 59(11), 1479-1485 (2016)

Articles

Professor Qiao’s laboratory lays out recent advances in conversion type lithium metal fluoride batteries. This review explores key concepts in developing electrochemically stable microstructures for wide Li-ion insertion channels.

Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.

Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.

Lithium-ion batteries (LIBs) have been widely adopted as the most promising portable energy source in electronic devices because of their high working voltage, high energy density, and good cyclic performance.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service