MilliporeSigma
All Photos(1)

920398

Sigma-Aldrich

Lithium bis(trimethylsilyl)amide

99.9% trace metals basis

Sign Into View Organizational & Contract Pricing

Select a Size

Synonym(s):
LHMDS, LiHMDS, LiTMSA, Lithium hexamethyldisilazide, Hexamethyldisilazane lithium salt
Linear Formula:
[(CH3)3Si]2NLi
CAS Number:
Molecular Weight:
167.33
MDL number:

Quality Level

Assay

99.9% trace metals basis

form

solid

density

0.860 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

[Li]N([Si](C)(C)C)[Si](C)(C)C

InChI

1S/C6H18NSi2.Li/c1-8(2,3)7-9(4,5)6;/h1-6H3;/q-1;+1

InChI key

YNESATAKKCNGOF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
577928919977920347
form

solid

form

-

form

-

form

powder

application(s)

battery manufacturing

application(s)

-

application(s)

battery manufacturing

application(s)

battery manufacturing

Quality Level

200

Quality Level

200

Quality Level

200

Quality Level

200

density

0.860 g/mL at 25 °C (lit.)

density

0.860 g/mL at 25 °C

density

-

density

-

Application

LiHDMS is utilized in synthesis of chalcogenide nanocrystals Solutions containing Li-bis (trimethylsilyl)amide has been used for stabilized storage of LiFePO4 cathodes. Lithium bis(trimethylsilyl)amide is also used in ALD growth of lithiuthium phosphate thin films.

Pictograms

FlameCorrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Flam. Sol. 1 - Self-heat. 1 - Skin Corr. 1B

Supplementary Hazards

Storage Class Code

4.2 - Pyrophoric and self-heating hazardous materials

WGK

WGK 2

Flash Point(F)

62.6 °F - closed cup

Flash Point(C)

17 °C - closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

On the Stability of LiFePO4 Olivine Cathodes under Various Conditions (Electrolyte Solutions, Temperatures)
Koltypin M, et al.
Electrochemical and Solid-State Letters, 10(2) (2007)
Lithium Phosphate Thin Films Grown by Atomic Layer Deposition.
Hamalainen J, et al.
Journal of the Electrochemical Society, 159(3), A259-A259 (2012)
Wenhua Li et al.
Journal of the American Chemical Society, 135(19), 7098-7101 (2013-05-08)
We report a procedure to prepare highly monodisperse copper telluride nanocubes, nanoplates, and nanorods. The procedure is based on the reaction of a copper salt with trioctylphosphine telluride in the presence of lithium bis(trimethylsilyl)amide and oleylamine. CuTe nanocrystals display a
Maksym Yarema et al.
ACS nano, 5(5), 3758-3765 (2011-04-20)
Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the
Olesya Yarema et al.
Chemistry of materials : a publication of the American Chemical Society, 25(18), 3753-3757 (2014-04-22)
We report a simple, high-yield colloidal synthesis of copper indium selenide nanocrystals (CISe NCs) based on a silylamide-promoted approach. The silylamide anions increase the nucleation rate, which results in small-sized NCs exhibiting high luminescence and constant NC stoichiometry and crystal

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service