Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

920851

Sigma-Aldrich

(S,R,S)-VL285 Phenol-C2-NH2 hydrochloride

Synonym(s):

(2S,4R)-N-(2-(2-Aminoethoxy)-4-(4-methylthiazol-5-yl)benzyl)-4-hydroxy-1-((S)-3-methyl-2-(1-oxoisoindolin-2-yl)butanoyl)pyrrolidine-2-carboxamide hydrochloride, Crosslinker−E3 Ligase ligand conjugate, VHL protein degrader building block for PROTAC® research

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C31H37N5O5S · xHCl
Molecular Weight:
591.72 (free base basis)
NACRES:
NA.22

ligand

VL285 phenol

Quality Level

form

solid

reaction suitability

reactivity: carboxyl reactive
reagent type: ligand-linker conjugate

functional group

amine

storage temp.

2-8°C

SMILES string

O=C1N([C@H](C(N(C2)[C@H](C(NCC3=CC=C(C=C3OCCN)C(SC=N4)=C4C)=O)C[C@H]2O)=O)C(C)C)CC5=C1C=CC=C5.Cl

Application

Protein degrader building block (S,R,S)-VL285 Phenol-C2-NH2 hydrochloride enables the synthesis of molecules for targeted protein degradation and PROTAC (proteolysis-targeting chimeras) technology. This conjugate contains a von Hippel-Lindau (VHL)-recruiting ligand with alternative exit vector from the widely used VH032 (901490), an alkyl-chain crosslinker, and a pendant amine for reactivity with a carboxylic acid on the target ligand. Because even slight alterations in ligands and crosslinkers can affect ternary complex formation between the target, E3 ligase, and PROTAC, many analogs are prepared to screen for optimal target degradation. When used with other protein degrader building blocks with a terminal amine, parallel synthesis can be used to more quickly generate PROTAC libraries that feature variation in crosslinker length, composition, and E3 ligase ligand.

Legal Information

PROTAC is a registered trademark of Arvinas Operations, Inc., and is used under license

Related product

Product No.
Description
Pricing

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Blake E Smith et al.
Nature communications, 10(1), 131-131 (2019-01-12)
PROteolysis-TArgeting Chimeras (PROTACs) are hetero-bifunctional molecules that recruit an E3 ubiquitin ligase to a given substrate protein resulting in its targeted degradation. Many potent PROTACs with specificity for dissimilar targets have been developed; however, the factors governing degradation selectivity within
Dennis L Buckley et al.
ACS chemical biology, 10(8), 1831-1837 (2015-06-13)
Small molecule-induced protein degradation is an attractive strategy for the development of chemical probes. One method for inducing targeted protein degradation involves the use of PROTACs, heterobifunctional molecules that can recruit specific E3 ligases to a desired protein of interest.
Daniel P Bondeson et al.
Annual review of pharmacology and toxicology, 57, 107-123 (2016-10-13)
Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of
Philipp M Cromm et al.
Cell chemical biology, 24(9), 1181-1190 (2017-06-27)
Traditional pharmaceutical drug discovery is almost exclusively focused on directly controlling protein activity to cure diseases. Modulators of protein activity, especially inhibitors, are developed and applied at high concentration to achieve maximal effects. Thereby, reduced bioavailability and off-target effects can

Articles

Protein Degrader Building Blocks are a collection of crosslinker-E3 ligand conjugates with a pendant functional group for covalent linkage to a target ligand.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service