Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

GF72027266

Silicon

disks, 13mm, thickness 0.38mm, single crystal, 100%

Synonym(s):

Silicon, SI003050

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Si
CAS Number:
Molecular Weight:
28.09
MDL number:
UNSPSC Code:
12141911
PubChem Substance ID:
NACRES:
NA.23

assay

100%

form

foil

manufacturer/tradename

Goodfellow 720-272-66

diam. × thickness

13 mm × 0.38 mm

bp

2355 °C (lit.)

mp

1410 °C (lit.)

density

2.33 g/mL at 25 °C (lit.)

SMILES string

[Si]

InChI

1S/Si

InChI key

XUIMIQQOPSSXEZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

For updated SDS information please visit www.goodfellow.com.

Legal Information

Product of Goodfellow

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Bomin Cho et al.
Journal of nanoscience and nanotechnology, 14(7), 4832-4836 (2014-04-25)
Asymmetric porous silicon multilayer (APSM)-based optical biosensor was developed to specify human Immunoglobin G (Ig G). APSM chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with
Timothy J Barnes et al.
Therapeutic delivery, 4(7), 811-823 (2013-07-26)
Porous silicon (pSi) is a nanostructured carrier system that has received considerable attention over the past 10 years, for use in a wide variety of biomedical applications, including biosensing, biomedical imaging, tissue scaffolds and drug delivery. This interest is due
Taiuk Rim et al.
Journal of nanoscience and nanotechnology, 14(1), 273-287 (2014-04-16)
The interest in biologically sensitive field effect transistors (BioFETs) is growing explosively due to their potential as biosensors in biomedical, environmental monitoring and security applications. Recently, adoption of silicon nanowires in BioFETs has enabled enhancement of sensitivity, device miniaturization, decreasing
A H Reshak et al.
Progress in biophysics and molecular biology, 113(2), 327-332 (2013-10-22)
The potential of solar cells have not been fully tapped due to the lack of energy conversion efficiency. There are three important mechanisms in producing high efficiency cells to harvest solar energy; reduction of light reflectance, enhancement of light trapping
Jacob Raber et al.
Radiation research, 181(4), 362-368 (2014-03-29)
The space radiation environment consists of multiple species of high-energy charge particles (HZE), including (56)Fe and (28)Si nuclei, that may impact neuronal cells, but their damaging effects on the central nervous system (CNS) have been poorly defined. Hippocampus-dependent memory functions

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service