All Photos(3)




Anti-phospho-ERK1 (pThr202/pTyr204) and ERK2 (pThr185/pTyr187) antibody produced in rabbit

affinity isolated antibody, buffered aqueous solution

Sign Into View Organizational & Contract Pricing

Phospho ERK Antibody - Anti-phospho-ERK1 (pThr202/pTyr204) and ERK2 (pThr185/pTyr187) antibody produced in rabbit, Phospho Erk Antibody, Anti-MAPK
MDL number:

biological source


Quality Level



antibody form

affinity isolated antibody

antibody product type

primary antibodies




buffered aqueous solution

species reactivity

rat, chicken, human, mouse


immunocytochemistry: suitable
western blot: suitable

UniProt accession no.

shipped in

wet ice

storage temp.


Gene Information

human ... MAPK3(5595)
mouse ... Mapk3(26417)
rat ... Mapk3(50689)

General description

Extracellular Signal-Regulated Kinases (ERKs) are members of mitogen-activated protein kinase superfamily (MAPK). MAPK cascade is an evolutionary conserved module that mediates the signaling from various extracellular stimuli to the nucleus. The well-characterized ERK module is activated in response to stimuli such as cytokines, growth factors, osmotic shock, or UV irradiation. ERKs regulate transcription, cell cycle, differentiation, learning, and memory through signal transduction in the cytoplasm and the nucleus. ERK1 and 2 phosphorylate microtubule-associated protein-2 (MAP2), myelin basic protein (MBP), and ELK-1. They may promote entry in the cell cycle. The ERK cascade connects to G proteins through a multitude of distinct signal transduction pathways. ERK1 (p44) and ERK2 (p42) require the dual phosphorylation in the catalytic kinase domain by MEKs for their full activity. ERK1 is phosphorylated on Tyr204 and Thr202, and ERK2 on Tyr187 and Thr185.
Mitogen-activated protein kinase (MAPK) superfamily of enzymes is involved in widespread signalling pathways. Members of this family include the ERK1/2 (extracellular signal-regulated protein kinase, also termed p42/p44 MAPK), JNK and p38 MAPK subfamilies. These are the terminal enzymes in a signalling cascade where each kinase phosphorylates and activates the next member in the sequence. Phosphorylation of both tyrosine and threonine is essential for the full activation of all MAPKs. Several kinases participate in activation of the ERK cascade. This cascade is initiated by the small G protein Ras, which upon stimulation causes activation Raf1 kinase. Raf1 continues the transmission by activating MEK. Activated MEK appears to be the only kinase capable of specifically phosphorylating and activating ERK. ERK1 (p44) and ERK2 (p42) require the dual phosphorylation in the catalytic kinase domain by MEKs for their full activity. ERK1 is phosphorylated on Tyr204 and Thr202, and ERK2 on Tyr187 and Thr185. ERK1 and 2 may also undergo autophosphorylation on these residues. ERK appears to be an important regulatory molecule, which by can phosphorylate regulatory targets in the cytosol (phospholipase A2, PLA2), translocated into and phosphorylate substrates in the nucleus (ELK1). The activation of ERK cascade mediates and regulates the signal transduction pathways in response to stress, mitogenic signals and is important in development and differentiation, learning, memory and survival.
This antibody recognises endogenous active forms of ERK1/2 (44/42 kDa) in human, mouse, rat and chick embryo.


Rabbit polyclonal anti-phospho-ERK1 (pThr202/pTyr204) and ERK2 (pThr185/pTyr187) antibody recognizes endogenous active forms of ERK1 & 2 (44 kDa and 42 kDa, respectively) in a variety of cell types, including human, mouse, rat and chick embryo.


synthetic phosphopeptide derived from the region of human ERK1 and 2 that contain threonine 202/185 and tyrosine 204/187 respectively.


A working dilution of 1:1000 is recommended for detection of ERK1 (phosphorylated at Thr202/185) and ERK2 (phosphorylated at Tyr204/187) in PC12 cells. The antibody is also suitable for immunocytochemistry and immunohistochemistry in human midbrain sections at a working dilution of 1:500 and 1:2000, respectively.
Rabbit polyclonal anti-phospho-ERK1 (pThr202/pTyr204) and ERK2 (pThr185/pTyr187) antibody may be used in immunoblotting and immunostaining applications. It is used to detect the presence of activated ERK1 and ERK2.

Physical form

Solution in Dulbecco′s with 50% glycerol, BSA and sodium azide.


Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

Storage Class

10 - Combustible liquids




Not applicable


Not applicable

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).


Product Number
Pack Size/Quantity

Additional examples:





enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Xiaochen Yang et al.
International journal of molecular medicine, 38(1), 30-38 (2016-05-26)
Fibroblast growth factor receptor (FGFR)-like protein 1 (FGFRL1) is the most recently discovered member of the FGFR family. Owing to the fact that it interacts with FGF ligands, but lacks the intracellular tyrosine kinase domain, several researchers have speculated that it may function as
Siwei Zhang et al.
PloS one, 8(11), e79469-e79469 (2013-11-19)
Embryonic development requires exquisite regulation of several essential processes, such as patterning of tissues and organs, cell fate decisions, and morphogenesis. Intriguingly, these diverse processes are controlled by only a handful of signalling pathways, and mis-regulation in one or more
Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging
Linda S et al
Aging, 2, 192-222 (2011)
Anastasios Chanalaris et al.
The American journal of pathology, 189(3), 632-647 (2018-12-17)
Osteoarthritis (OA) is a common degenerative joint disease, characterized by cartilage loss and subchondral bone remodeling in response to abnormal mechanical load. Heparan sulfate (HS) proteoglycans bind to many proteins that regulate cartilage homeostasis, including growth factors, morphogens, proteases, and
Jian-Hui Zhu et al.
The American journal of pathology, 161(6), 2087-2098 (2002-12-06)
A better understanding of cellular mechanisms that occur in Parkinson's disease and related Lewy body diseases is essential for development of new therapies. We previously found that 6-hydroxydopamine (6-OHDA) elicits sustained extracellular signal-regulated kinase (ERK) activation that contributes to neuronal

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service