Skip to Content
MilliporeSigma
All Photos(1)

Documents

20678

Supelco

Thermogreen® LB-2 Septa, solid discs

diam. 12.5 mm ( 1/2 in.), pkg of 250 ea

Sign Into View Organizational & Contract Pricing

UNSPSC Code:
41115718

packaging

pkg of 250 ea

diam.

12.5 mm ( 1/2 in.)

compatibility

for use with Finnigan 9000, 9500
for use with Tracor 220, 222

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Septum is a very important component of syringe injection system. They are usually fabricated from elastomeric, self-sealing materials such as silicone rubber, neoprene or fluoroelastomers. It is suitable to conveniently introducing the sample without causing the system to leak. Improper septa decomposes under the high-temperature conditions of capillary inlets causing baseline disruption and ghost peaks in a chromatogram.
An improved version over the original Thermogreen LB-1 septa.
  • Extremely low bleed over a wide range of inlet temperatures (100 °C to 350 °C)
  • Already conditioned, ready to use
  • Easier needle penetration and high puncture tolerance (ideal for autosamplers)
  • Rubber formulation exclusive to Supelco

Application

Thermogreen® LB-2 Septa is suitable for the following applications:
  • To minimize extraction onto or loss of analytes off the solid phase microextraction (SPME) fiber from the vial during analysis by GC-MS.
  • Thermo-resistant septa is used in GC instrument to avoid carrier gas leaks, extraneous peaks and phthalate contamination.
  • Thermo-resistant septa along with thick needle protector is used in GC instruments to avoid damage irreversibly caused by microsyringe.
  • It is also used in the influent sampling ports in gas chromatographs.

Legal Information

Swagelok is a registered trademark of Swagelok Company
Thermogreen is a registered trademark of Merck KGaA, Darmstadt, Germany

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Robert L. Grob, PhD, Eugene F. Barry, PhD
Modern Practice of Gas Chromatography, 471-472 (2004)
Effect of periods of non-use on biofilter performance.
Martin, F. Jason, and Raymond C. Loehr.
Journal of the Air & Waste Management Association (1995), 46, 539-546 (1996)
Solid-phase microextraction (SPME) for rapid field sampling and analysis by gas chromatography-mass spectrometry (GC-MS).
Hook, Gary L., et al.
TrAC, Trends in Analytical Chemistry, 21, 534-543 (2002)
Elefteria Psillakis et al.
Journal of chromatography. A, 999(1-2), 145-153 (2003-07-30)
A simple and efficient liquid-phase microextraction (LPME) technique using a hollow-fibre membrane, in conjunction with gas chromatography-mass spectrometry has been developed for the extraction and analysis of six phthalate esters in water samples. Parameters such as extraction solvent, agitation of
R.L. Grob, M.A. Kaiser
Environmental Problem Solving Using Gas and Liquid Chromatography, 166-166 (2000)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service