Skip to Content
MilliporeSigma
  • Magnetic poly(vinylpyridine)-coated carbon nanotubes: an efficient supramolecular tool for wastewater purification.

Magnetic poly(vinylpyridine)-coated carbon nanotubes: an efficient supramolecular tool for wastewater purification.

ChemSusChem (2012-12-15)
Laura Maggini, Jean-Marie Raquez, Riccardo Marega, Jennifer Jensen Ahrens, Florent Pineux, Franck Meyer, Philippe Dubois, Davide Bonifazi
ABSTRACT

Herein, we report the first example of a supramolecular carbon nanotube (CNT)-based magnetic depolluting agent for divalent metal ion (M(2+)) removal from aqueous solutions. In particular, magnetic multi-walled carbon nanotubes (m-MWCNTs) coated with poly(vinylpyridine) (PVPy) self-aggregate in aqueous solutions that contain divalent metal ions (such as Zn(2+), Cu(2+) and Pb(2+)) to form tight insoluble bundles in which the M(2+) ions remain trapped through pyridyl-M(2+)-pyridyl interactions. Magnetic filtration ultimately affords the efficient separation of the depolluted solution from the precipitated M(2+)-CNT agglomerates. Upon acid treatment, the supramolecular threads could be disassembled to afford the free CNT-polymer hybrid, thus allowing recycling of the depolluting agent. All materials and complexation/decomplexation steps were thoroughly characterised by using thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission and scanning electron microscopy (TEM and SEM, respectively). The quantification of the M(2+) residual concentrations in water was evaluated by using inductively coupled plasma optical emission spectroscopy (ICP-OES), which showed that, depending on the metal cation, this material can remove up to 99% of the contaminant.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(4-vinylpyridine), average Mw ~60,000
Sigma-Aldrich
Poly(4-vinylpyridine), average Mw ~160,000