Skip to Content
MilliporeSigma
  • Modification of poly(ether urethane)elastomers by incorporation of poly(isobutylene)glycol. Relation between polymer properties and thrombogenicity.

Modification of poly(ether urethane)elastomers by incorporation of poly(isobutylene)glycol. Relation between polymer properties and thrombogenicity.

Journal of biomaterials science. Polymer edition (1996-01-01)
E Mitzner, T Groth
ABSTRACT

Non-polar hydrophobic poly(isobutylene)glycol (PIBG) was substituted for poly(tetramethylene ether)glycol (PTMEG) in poly(ether urethanes) based on 4,4'-methylenebis-(phenylisocyanate) (MDI) and 1,4-butanediol (BD) as chain extender. Two series of polyurethanes differing in their soft segment length, polymer composition, and hard segment content were studied by dynamic mechanical analysis (DMA) and static, as well as dynamic, contact angle measurements. The thrombogenicity of these polymers was characterized by studying the adhesion and activation of platelets using ELISA for GMP 140 and fluorescence microscopy. It was found by DMA that in PIBG-containing polyurethanes (PUE) exist soft domains containing hard segments, strictly separated hard segment domains, and hard segments partially mixed with soft segments. Contact angle measurements revealed that 25% PIBG or even less, are sufficient for a remarkable enrichment of these non-polar soft segments on the polymer surface. The platelet adhesion/activation on these materials was demonstrated to increase with the rise in hard segment content, as well as with an enhancement of the PIBG content. However, comparison of PIBG-containing PUE with medical applied polypropylene and pellethane expressed that PUE with PIBG content equal or less 25% have excellent haemocompatibility.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(tetrahydrofuran), average Mn ~2,000, contains BHT as stabilizer
Sigma-Aldrich
Poly(tetrahydrofuran), average Mn ~1,000
Sigma-Aldrich
Poly(tetrahydrofuran), average Mn ~2,900