- Preparation and protein immobilization of magnetic dialdehyde starch nanoparticles.
Preparation and protein immobilization of magnetic dialdehyde starch nanoparticles.
Superparamagnetic Fe3O4 nanoparticles were obtained using a hydrolysis product of starch, i.e., α-d-glucose, as the reducing agent and without any additional stabilizer and dispersant by a facile and green method at mild temperature. Magnetic dialdehyde starch nanoparticles (MDASN) were successfully synthesized with dialdehyde starch (DAS) as wrapper and epichlorohydrin as cross-linker by coembedding method. Bovine serum albumin (BSA) as a model drug was immobilized on the suface of MDASN. The particle size distribution of MDASN was 50-150 nm, and the average size was about 100 nm. The content of aldehyde group in DAS was 59.5%, and the package rate of DAS in MDASN was 33.2%. The loading amount and encapsulation efficiency of MDASN loading BSA were 5.0% and 54.4%, respectively. The saturation magnetization of MDASN at 300 K was 29.5 emu/g without coercivity and remanence. The as-prepared MDASN have not only lots of aldehyde functional groups but also stronger magnetic response, which might have potential applications such as drug carriers and targeted drug release.