MilliporeSigma
All Photos(1)

700312

Sigma-Aldrich

Iron oxide(II,III), magnetic nanoparticles solution

10 nm avg. part. size, 5 mg/mL in toluene

Sign Into View Organizational & Contract Pricing

Select a Size

Synonym(s):
Magnetic iron oxide nanocrystals, Magnetite, Superparamagnetic iron oxide nanoparticles
Empirical Formula (Hill Notation):
Fe3O4
CAS Number:
Molecular Weight:
231.53
MDL number:
PubChem Substance ID:
NACRES:
NA.23

form

nanoparticles
solution

Quality Level

concentration

5 mg/mL in toluene

magnetization

>45 emu/g (at ambient temperature under 4500 Oe)

avg. part. size

10 nm

particle size

9-11 nm (TEM; conforms)

density

0.865 g/mL at 25 °C

SMILES string

O=[Fe].O=[Fe]O[Fe]=O

InChI

1S/3Fe.4O

InChI key

SZVJSHCCFOBDDC-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
747408637106700304
Iron(II,III) oxide nanopowder, 50-100 nm particle size (SEM), 97% trace metals basis

Sigma-Aldrich

637106

Iron(II,III) oxide

particle size

9-11 nm (TEM; conforms)

particle size

-

particle size

50-100 nm (SEM)

particle size

20 nm (+/- 2nm TEM)

density

0.865 g/mL at 25 °C

density

0.988 g/mL at 25 °C, ~1 g/mL at 25 °C

density

4.8-5.1 g/mL at 25 °C (lit.)

density

0.865 g/mL at 25 °C

concentration

5 mg/mL in toluene

concentration

1 mg/mL Fe in H2O

concentration

-

concentration

5 mg/mL in toluene

magnetization

>45 emu/g (at ambient temperature under 4500 Oe)

magnetization

>45 emu/g (at room temperature; under 4500 Oe)

magnetization

-

magnetization

>20 emu/g, at room temp. under 4500 Oe

avg. part. size

10 nm

avg. part. size

30 nm (TEM)

avg. part. size

-

avg. part. size

20 nm

General description

Iron oxide(II,III), magnetic nanoparticles solution (Fe3O4) is an organic solvent dispersed nanoparticle solution, which can be synthesized by the thermal decomposition of iron acetylacetonate in 2-pyrrolidone. It is majorly used in biomedical applications due to its magnetic properties, particle size, and surface properties.
It contains <1.0% oleic acid stabilizing ligands.
Concentration 5mg/ml includes total weight nanocrystals plus ligands.

Application

Fe3O4 can be used in the targeting and imaging of tumor cells for cancer therapy-based applications. It may also be used in the separation of tumor cells from fresh whole blood. It can also be used as an effective material in drug delivery systems and magnetic resonance imaging (MRI).

Signal Word

Danger

Hazard Classifications

Aquatic Chronic 3 - Asp. Tox. 1 - Flam. Liq. 2 - Repr. 2 - Skin Irrit. 2 - STOT RE 2 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

45.0 °F

Flash Point(C)

7.2 °C

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents
Portet D, et al.
Journal of Colloid and Interface Science, 238(1), 37-42 (2001)
Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system
Neuberger T, et al.
Journal of magnetism and magnetic materials, 293(1), 483-496 (2005)
Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood
Xu H, et al.
Biomaterials, 32(36), 9758-9765 (2011)
Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy
Peng X, et al.
International journal of nanomedicine, 3(3), 311-311 (2008)
Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis
Iida H, et al.
Journal of Colloid and Interface Science, 314(1), 274-280 (2007)

Articles

Graphene-Based Composites and their Unique Renewable Energy Applications

Graphene is a unique two-dimensional (2D) structure of monolayer carbon atoms packed into a dense honeycomb crystal that has attracted great interest due to its diverse and fascinating properties.

Recent Developments in Magnetic Iron Oxide Nanoparticles for Non-Invasive Bioimaging

Professor Hui Mao explores the use of superparamagnetic iron oxide nanoparticles (INOPs) that offer an alternate contrast-enhancing mechanism.

Synthesis and Application of Shape-Controlled Fe3O4 Nanostructure

Professor Yadong Yin (University of California Riverside, USA) examines both direct (thermal decomposition, solvothermal, hydrothermal) and indirect (templated) synthesis methods of magnetite nanocrystals and reviews in detail the landscape of these various synthetic methods for magnetite nanocrystal and their applications in magnetic assembly, magnetic hyperthermia, and Li-Ion batteries.

Soft Magnetic Nanocrystalline Alloys: Materials and Models

Magnetic materials permeate numerous daily activities in our lives. They are essential components of a diversity of products including hard drives that reliably store information on our computers, decorative magnets that keep the shopping list attached to the refrigerator door, electric bicycles that speed our commute to work, as well as wind turbines for conversion of wind energy to electrical power.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service