MilliporeSigma
All Photos(2)

Documents

747408

Sigma-Aldrich

Iron oxide(II,III), magnetic nanoparticles solution

30 nm avg. part. size (TEM), PEG functionalized, 1 mg/mL Fe in H2O, dispersion

Sign Into View Organizational & Contract Pricing

Synonym(s):
Fe NP PEG, FexOy, Magnetic iron oxide nanocrystals, Magnetite, Superparamagnetic iron oxide nanoparticles
Empirical Formula (Hill Notation):
Fe3O4
CAS Number:
Molecular Weight:
231.53
MDL number:
PubChem Substance ID:
NACRES:
NA.23

form

dispersion
nanoparticles

Quality Level

concentration

1 mg/mL Fe in H2O

magnetization

>45 emu/g (at room temperature; under 4500 Oe)

color

black

avg. part. size

30 nm (TEM)

density

0.988 g/mL at 25 °C
~1 g/mL at 25 °C

functional group

PEG

storage temp.

2-8°C

SMILES string

O=[Fe].O=[Fe]O[Fe]=O

InChI

1S/3Fe.4O

InChI key

SZVJSHCCFOBDDC-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
790508747319747327
density

0.988 g/mL at 25 °C

density

0.995 g/mL at 25 °C, ~1 g/mL at 25 °C

density

0.996 g/mL at 25 °C, ~1 g/mL at 25 °C

density

~1 g/mL at 25 °C

concentration

1 mg/mL Fe in H2O

concentration

1 mg/mL Fe in H2O

concentration

1 mg/mL Fe in H2O

concentration

1 mg/mL Fe in H2O

magnetization

>45 emu/g (at room temperature; under 4500 Oe)

magnetization

>25 emu/g (at room temperature; under 4500 Oe)

magnetization

>45 emu/g, at room temperature; under 4500 Oe

magnetization

>45 emu/g, at room temperature; under 4500 Oe

color

black

color

brown

color

brown

color

black

avg. part. size

30 nm (TEM)

avg. part. size

5 nm (TEM)

avg. part. size

10 nm (TEM)

avg. part. size

30 nm (TEM)

General description

Concentration 5mg/ml includes total weight nanocrystals plus ligands.

Application

These magnetic nanoparticles are typically used in imaging or as contrast agents. The surface functionality allows for different ligation or further functionalization.

Do not freeze.

Legal Information

Product of Supplier: OCEAN NANOTECH LLC

Storage Class

12 - Non Combustible Liquids

wgk_germany

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Anna Lohße et al.
Journal of bacteriology, 196(14), 2658-2669 (2014-05-13)
Biosynthesis of bacterial magnetosomes, which are intracellular membrane-enclosed, nanosized magnetic crystals, is controlled by a set of >30 specific genes. In Magnetospirillum gryphiswaldense, these are clustered mostly within a large conserved genomic magnetosome island (MAI) comprising the mms6, mamGFDC, mamAB
Aude Picard et al.
Nature communications, 6, 6277-6277 (2015-02-19)
Twisted stalks are organo-mineral structures produced by some microaerophilic Fe(II)-oxidizing bacteria at O2 concentrations as low as 3 μM. The presence of these structures in rocks having experienced a diagenetic history could indicate microbial Fe(II)-oxidizing activity as well as localized
Faheem Muhammad et al.
Colloids and surfaces. B, Biointerfaces, 123, 506-514 (2014-12-03)
Simultaneous delivery of multiple therapeutic agents is of great importance for effective chemotherapy due of its well-known drug synergism and suppression to chemoresistance. We report a new theranostic nanoformulation to shuttle multiple chemotherapeutic agents for successfully exterminating cancer cells. This
Tianyuzi Li et al.
International journal of nanomedicine, 10, 3779-3790 (2015-06-18)
Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory's development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress
Yingjie Li et al.
Journal of bacteriology, 196(14), 2552-2562 (2014-05-06)
The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense and other magnetotactic bacteria occurs only under suboxic conditions. However, the mechanism of oxygen regulation and redox control of biosynthesis of the mixed-valence iron oxide magnetite [FeII(FeIII)2O4] is still unclear. Here, we set

Articles

Iron oxide (IO) nanoparticles consist of maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) particles with diameters ranging from 1 and 100 nanometer and find applications in magnetic data storage, biosensing, drug-delivery etc.

Explore DNA-functionalized nanoparticles in sensors for precise target analyte detection. Learn about types, synthesis, functionalization, and design optimization, with insights into challenges and prospects.

Professor Mitsuhiro Ebara provides insights on several types of smart nanofiber mesh systems that have been explored for different drug delivery purposes.

The recent emergence of a number of highly functional nanomaterials has enabled new approaches to the understanding, diagnosis, and treatment of cancer.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service