Skip to Content
MilliporeSigma

Mycotoxin-containing diet causes oxidative stress in the mouse.

PloS one (2013-04-05)
Yan-Jun Hou, Yong-Yan Zhao, Bo Xiong, Xiang-Shun Cui, Nam-Hyung Kim, Yin-Xue Xu, Shao-Chen Sun
ABSTRACT

Mycotoxins which mainly consist of Aflatoxin (AF), Zearalenone (ZEN) and Deoxynivalenol (DON) are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize) was incorporated into the diet at three different doses (0, 5 and 20%) to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx) activity and malondialdehyde (MDA) level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT) activity in the serum, liver and kidney as well as superoxide dismutase (SOD) activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Deoxynivalenol
Supelco
Deoxynivalenol solution, 100 μg/mL in acetonitrile, analytical standard
4-Deoxynivalenol in acetonitrile, IRMM®, certified reference material