Skip to Content
MilliporeSigma
  • Step-feed biofiltration: a low cost alternative configuration for off-gas treatment.

Step-feed biofiltration: a low cost alternative configuration for off-gas treatment.

Water research (2013-06-15)
José M Estrada, Guillermo Quijano, Raquel Lebrero, Raúl Muñoz
ABSTRACT

Clogging due to biomass accumulation and the loss of structural stability of the packing media are common operational drawbacks of standard gas biofiltration inherent to the traditional biofilter design, which result in prohibitive pressure drop buildups and media channeling. In this work, an innovative step-feed biofilter configuration, with the air emission supplied in either two or three locations along the biofilter height, was tested and compared with a standard biofilter using toluene as a model pollutant and two packing materials: compost and perlite. When using compost, the step-feed biofilter supported similar elimination capacities (EC ≈ 80 g m(-3) h(-1)) and CO2 production rates (200 g m(-3) h(-1)) to those achieved in the standard biofilter. However, while the pressure drop in the step-feed system remained below 300 Pa m bed(-1) for 61 days, the standard biofilter reached this value in only 14 days and 4000 Pa m bed(-1) by day 30, consuming 75% more compression energy throughout the entire operational period. Operation with perlite supported lower ECs compared to compost in both the step-feed and standard biofilters (≈ 30 g m(-3) h(-1)), probably due to the high indigenous microbial diversity present in this organic packing material. The step-feed biofilter exhibited 65% lower compression energy requirements than the standard biofilter during operation with perlite, while supporting similar ECs. In brief, step-feed biofiltration constitutes a promising operational strategy capable of drastically reducing the operating costs of biofiltration due to a reduced energy consumption and an increased packing material lifespan.

MATERIALS
Product Number
Brand
Product Description

Supelco
Toluene solution, certified reference material, 5000 μg/mL in methanol
Sigma-Aldrich
Aluminum oxide, mesoporous, MSU-X (wormhole), average pore size 3.8 nm
Supelco
Aluminum oxide, activated, neutral, Brockmann Activity I
Sigma-Aldrich
Toluene, ACS reagent, ≥99.5%
Sigma-Aldrich
Aluminum oxide, activated, acidic, Brockmann I
Sigma-Aldrich
Aluminum oxide, activated, neutral, Brockmann I
Sigma-Aldrich
Toluene, ACS reagent, ≥99.5%
Sigma-Aldrich
Aluminum oxide, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
Aluminum oxide, pore size 58 Å, ~150 mesh
Sigma-Aldrich
Toluene, Laboratory Reagent, ≥99.3%
Sigma-Aldrich
Aluminum oxide, activated, basic, Brockmann I
Sigma-Aldrich
Aluminum oxide, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
Aluminum oxide, activated, acidic, Brockmann I, free-flowing, Redi-Dri
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
Toluene, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.7% (GC)
Sigma-Aldrich
Aluminum oxide, Corundum, α-phase, -100 mesh
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
Toluene, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Aluminum oxide, pellets, 3 mm
Sigma-Aldrich
Aluminum oxide, activated, neutral, Brockmann I, free-flowing, Redi-Dri
Sigma-Aldrich
Toluene, ACS reagent, ≥99.5%
Sigma-Aldrich
Aluminum oxide, powder, 99.99% trace metals basis
Sigma-Aldrich
Aluminum oxide, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
Toluene, JIS special grade, ≥99.5%
Sigma-Aldrich
Toluene, SAJ first grade, ≥99.0%
Sigma-Aldrich
Toluene, JIS 300, for residue analysis, ≥99.8%
Sigma-Aldrich
Toluene, JIS 1000, for residue analysis, ≥99.8%
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Supelco
Toluene, HPLC grade, 99.8%
Supelco
Aluminum oxide, for the determination of hydrocarbons