Skip to Content
MilliporeSigma
  • Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia).

Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia).

Aquatic toxicology (Amsterdam, Netherlands) (2014-04-17)
Sunandan Pakrashi, Swayamprava Dalai, Natarajan Chandrasekaran, Amitava Mukherjee
ABSTRACT

The transfer of nanoparticles through the food chain can lead to bioaccumulation and biomagnification resulting in a long term negative impact on the ecosystem functions. The primary objective of this study was evaluation of aluminium oxide nanoparticles transfer from primary producers to primary consumers. A simple set up consisting of a primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia) was used. Here, C. ellipsoides were exposed to the varying concentrations of the nanoparticles ranging from 20 to 120μg/mL (196 to 1176μM) for 48h and the infested algal cells were used as the feed to C. dubia. The bioaccumulation of the nanoparticles into the daphnids was noted and the biomagnification factors were computed. The exposure was noted to cause subtle alterations in the feeding behaviour of the daphnids. This might have long term consequences in the energy flow through the food chain. The reproductive behaviour of the daphnids remained unaffected upon exposure to nanoparticle infested algal feed. Distinct observations at ultra-structural scale using transmission electron microscopy provided visual evidences for the disrupted feeding behaviour upon exposure to nanoparticle treated algae. Internalization of nanoparticle like inclusion bodies in the intracellular space of algae was also detected. The findings were further substantiated by a detailed analysis of hydrodynamic stability, bioavailability and dissolution of ions from the nanoparticles over the exposure period. Altogether, the study brings out the first of its kind of observation of trophic transfer potential/behaviour of aluminium oxide nanoparticles and its probable impacts on the energy flow in the fresh water aquatic ecosystem.

MATERIALS
Product Number
Brand
Product Description

Supelco
Aluminum oxide, activated, neutral, Brockmann Activity I
Sigma-Aldrich
Aluminum oxide, mesoporous, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
Aluminum oxide, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
Aluminum oxide, nanopowder, <50 nm particle size (TEM)
Supelco
Aluminum oxide, for the determination of hydrocarbons
Sigma-Aldrich
Aluminum oxide, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
Aluminum oxide, 99.997% trace metals basis
Sigma-Aldrich
Aluminum oxide, CP
Sigma-Aldrich
Aluminum oxide, Brockmann I, standard grade, activated, acidic
Sigma-Aldrich
Aluminum oxide, activated, Brockmann I, standard grade, neutral
Sigma-Aldrich
Aluminum oxide, standard grade, Brockmann I, activated, basic
Sigma-Aldrich
Aluminum oxide, pore size 58 Å, ~150 mesh
Sigma-Aldrich
Aluminum oxide, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
Aluminum oxide, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
Aluminum oxide, Corundum, α-phase, -100 mesh
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
Aluminum oxide, single crystal substrate, <0001>
Sigma-Aldrich
Aluminum oxide, powder, 99.99% trace metals basis
Sigma-Aldrich
Aluminum oxide, pellets, 3 mm
Sigma-Aldrich
Aluminum oxide, Brockmann I, standard grade, activated, neutral, free-flowing, Redi-Dri
Sigma-Aldrich
Aluminum oxide, Brockmann I, activated, standard grade, free-flowing, Redi-Dri
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O