Skip to Content
MilliporeSigma
  • Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production.

Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production.

Applied and environmental microbiology (2014-08-31)
Johan O Westman, Valeria Mapelli, Mohammad J Taherzadeh, Carl Johan Franzén
ABSTRACT

Yeast has long been considered the microorganism of choice for second-generation bioethanol production due to its fermentative capacity and ethanol tolerance. However, tolerance toward inhibitors derived from lignocellulosic materials is still an issue. Flocculating yeast strains often perform relatively well in inhibitory media, but inhibitor tolerance has never been clearly linked to the actual flocculation ability per se. In this study, variants of the flocculation gene FLO1 were transformed into the genome of the nonflocculating laboratory yeast strain Saccharomyces cerevisiae CEN.PK 113-7D. Three mutants with distinct differences in flocculation properties were isolated and characterized. The degree of flocculation and hydrophobicity of the cells were correlated to the length of the gene variant. The effect of different strength of flocculation on the fermentation performance of the strains was studied in defined medium with or without fermentation inhibitors, as well as in media based on dilute acid spruce hydrolysate. Strong flocculation aided against the readily convertible inhibitor furfural but not against less convertible inhibitors such as carboxylic acids. During fermentation of dilute acid spruce hydrolysate, the most strongly flocculating mutant with dense cell flocs showed significantly faster sugar consumption. The modified strain with the weakest flocculation showed a hexose consumption profile similar to the untransformed strain. These findings may explain why flocculation has evolved as a stress response and can find application in fermentation-based biorefinery processes on lignocellulosic raw materials.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethanol-400 (10 ampules/kit), 400 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol-25, 25 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol-500, 500 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol-20 (10 ampules/kit), 20 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Furfural, natural, ≥98%, FCC, FG
Sigma-Aldrich
Levulinic acid, ≥97%, FG
Sigma-Aldrich
Furfural, ≥98%, FCC, FG
Sigma-Aldrich
Levulinic acid, 98%
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.003% water
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Reagent Alcohol, reagent grade
Supelco
Avicel® PH-101, ~50 μm particle size
Sigma-Aldrich
α-Cellulose, powder
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Sigmacell Cellulose, Type 20, 20 μm
Sigma-Aldrich
Sigmacell Cellulose, Type 50, 50 μm
Sigma-Aldrich
Sigmacell Cellulose, Type 101, Highly purified, fibers
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.005% water
Sigma-Aldrich
α-Cellulose, BioReagent, suitable for insect cell culture
Supelco
Ethanol Calibration Kit, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Furfural, analytical standard
Sigma-Aldrich
Furfural, ACS reagent, 99%
Sigma-Aldrich
Furfural, 99%
Supelco
Levulinic acid, analytical standard
Sigma-Aldrich
Reagent Alcohol, suitable for HPLC
Sigma-Aldrich
Levulinic acid, natural, 99%, FG
Sigma-Aldrich
Furfural, SAJ first grade, ≥99.0%