Skip to Content
MilliporeSigma
  • Microtensile bond strength of lithium disilicate ceramics to resin adhesives.

Microtensile bond strength of lithium disilicate ceramics to resin adhesives.

The journal of adhesive dentistry (2014-12-18)
Moustafa N Aboushelib, Donia Sleem
ABSTRACT

To evaluate the influence of the internal structure of lithium disilicate glass ceramics (LDC) on the microtensile bond strength to a resin adhesive using two surface treatments. Milling blocks of three types of LDC were sectioned (4 mm thick) using a precision cutting machine: IPS Empress 2 (conventional LDC), IPSe.max CAD (a refined crystal high strength LDC), and Celtra (zirconia reinforced LDC). Cut specimens received crystallization heat treatment as suggested by the manufacturers. Two surface treatments were performed on each group: hydrofluoric acid etching (HF) and airborne particle abrasion using 50-μm glass beads, while the as-cut surface served as control. Treated surfaces were examined using scanning electron microscopy (SEM). The disks were coated with a silane primer and bonded to pre-aged resin composite disks (Tetric EvoCeram) using a resin adhesive (Variolink II) and then stored in water for 3 months. Bonded specimens were sectioned into micro-bars (1x1x6 mm) and microtensile bond strength test (MTBS) was performed. Data were analyzed using two-way ANOVA and Tukey's post-hoc test (α=0.05). Statistical analysis revealed significant differences in microtensile bond strength values between different LDCs (F=67, p<0.001), different surface treatments (F=232, p<0.001), and interaction between LDC and surface treatments (F=10.6, p<0.001). Microtensile bond strength of Celtra ceramic (30.4±4.6 MPa) was significantly higher than both IPS Empress 2 (21.5±5.9 MPa) and IPSe.max ceramics (25.8±4.8 MPa), which had almost comparable MTBS values. SEM images demonstrated homogenous glassy matrix and reinforcing zirconia fillers characteristic of Celtra ceramic. Heat treatment resulted in growth and maturation of lithium disilicate crystals. Particle abrasion resulted in abrasion of the glass matrix and exposure of lithium disilicate crystals, while HF etching produced a microrough surface, which resulted in higher MTBS values and reduction in the percentage of adhesive failure for all groups. Within the limitations of this study, bond strength to lithium disilicate ceramics depends on proper surface treatment and on the chemical composition of the glass ceramic.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Water, Deionized
Sigma-Aldrich
Water, ACS reagent
Sigma-Aldrich
Water, suitable for HPLC
Sigma-Aldrich
Water, HPLC Plus
Zirconium, rod, 1000mm, diameter 5.0mm, centerless ground, 99.2%
Zirconium, tube, 100mm, outside diameter 2.0mm, inside diameter 1.6mm, wall thickness 0.2mm, annealed, 99.2%
Zirconium, wire reel, 20m, diameter 0.5mm, as drawn, 99.2%
Zirconium, foil, not light tested, 50x50mm, thickness 0.006mm, 99.2%
Zirconium, sponge, 20g, max. size 25mm, 99.2%
Zirconium, rod, 1000mm, diameter 1.5mm, 99.2%
Zirconium, rod, 100mm, diameter 2.0mm, centerless ground, 99.2%
Zirconium, rod, 100mm, diameter 3.0mm, centerless ground, 99.2%
Zirconium, rod, 1000mm, diameter 12.7mm, centerless ground, 99.2%
Zirconium, rod, 200mm, diameter 5.0mm, centerless ground, 99.2%
Zirconium, rod, 100mm, diameter 5.0mm, centerless ground, 99.2%
Zirconium, wire reel, 2m, diameter 0.05mm, as drawn, 99.2%
Zirconium, wire reel, 0.5m, diameter 0.05mm, as drawn, 99.2%
Zirconium, sponge, 50g, max. size 25mm, 99.2%
Zirconium, tube, 500mm, outside diameter 2.0mm, inside diameter 1.6mm, wall thickness 0.2mm, annealed, 99.2%
Zirconium, rod, 500mm, diameter 3.0mm, centerless ground, 99.2%
Zirconium, wire reel, 1m, diameter 0.25mm, as drawn, 99.2%
Zirconium, rod, 100mm, diameter 50mm, centerless ground, 99.2%
Zirconium, sponge, 100g, max. size 25mm, 99.2%
Zirconium, wire reel, 5m, diameter 0.05mm, as drawn, 99.2%
Zirconium, wire reel, 10m, diameter 0.5mm, as drawn, 99.2%
Zirconium, rod, 1000mm, diameter 3.0mm, centerless ground, 99.2%
Zirconium, tube, 100mm, outside diameter 12.7mm, inside diameter 9.5mm, wall thickness 1.6mm, annealed, 99.2%
Zirconium, rod, 200mm, diameter 9.5mm, centerless ground, 99.2%
Zirconium, tube, 500mm, outside diameter 12.7mm, inside diameter 9.5mm, wall thickness 1.6mm, annealed, 99.2%
Zirconium, sponge, 200g, max. size 25mm, 99.2%