Skip to Content
MilliporeSigma
  • Single-step approach for fabrication of vancomycin-bonded silica monolith as chiral stationary phase.

Single-step approach for fabrication of vancomycin-bonded silica monolith as chiral stationary phase.

Journal of chromatography. A (2014-07-23)
Ming-Lung Hsieh, Lai-Kwan Chau, Yung-Son Hon
ABSTRACT

A vancomycin-bonded silica monolithic column for capillary electrochromatography (CEC) was prepared by a single-step in situ sol-gel approach. This sol-gel process incorporates a synthetic sol-gel precursor which contains a macrocyclic antibiotic, vancomycin, to form a porous silica network inside a fused-silica capillary. To avoid degradation of vancomycin during the column fabrication, a mild step was adopted into the sol-gel process. The performance of the vancomycin chiral stationary phase was investigated by CEC in both the reversed-phase mode and the normal-phase mode. The vancomycin chiral stationary phase was optimized with respect to vancomycin loading in the reversed-phase mode for chiral separation of thalidomide enantiomers. The best efficiency and resolution values of 94600plates/m and 5.79, respectively, were achieved. The optimized column was further applied to chiral separation of alprenolol enantiomers. A plate height of less than 7μm for the first eluted enantiomer of alprenolol was obtained in an aqueous mobile phase at a flow rate of 0.74mm/s. Using enantiomers of seven β-blockers and some other basic enantiomers as test analytes, separation efficiencies of up to 148100plates/m in the reversed-phase mode and up to 138100plates/m in the normal-phase mode were achieved.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Sigma-Aldrich
Diethyl ether, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Supelco
Acetone, analytical standard
Supelco
Diethyl ether, analytical standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Triethylamine, for protein sequence analysis, ampule, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, for amino acid analysis, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
N,N-Dimethylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Pindolol, ≥98% (TLC), powder
Sigma-Aldrich
Triethylamine, ≥99%
Sigma-Aldrich
Triethylamine, ≥99.5%
Supelco
Warfarin, analytical standard
Sigma-Aldrich
Atenolol, ≥98% (TLC), powder
Sigma-Aldrich
N,N-Dimethylformamide, for molecular biology, ≥99%
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Acetone, for residue analysis, JIS 5000