Skip to Content
MilliporeSigma

Role of glutathione peroxidase 4 in conjunctival epithelial cells.

Investigative ophthalmology & visual science (2015-01-13)
Osamu Sakai, Takatoshi Uchida, Hirotaka Imai, Takashi Ueta, Shiro Amano
ABSTRACT

The purpose of the present study was to investigate the role of glutathione peroxidase 4 (GPx4) in conjunctival epithelial cells. An immortalized human conjunctival epithelial cell line was used. Cells were transfected with catalase, GPx1, GPx4, SOD1, SOD2, or control siRNA. Knockdown was confirmed by RT-PCR and immunoblotting. The cytotoxicity induced by knockdown of these antioxidant enzymes was examined by assay of LDH activity. Furthermore, evaluations of lipid peroxidation, cellular levels of reactive oxygen species, cell proliferation, and apoptosis were conducted in cells treated with GPx4 or control siRNA. In oxidative stress study, cells treated with GPx4 or control siRNA were applied with hydrogen peroxide or ferric sulfide, and their cytotoxicity was evaluated by assay of LDH activity. Small interfering RNA of catalase, GPx1, GPx4, SOD1, and SOD2 siRNA remarkably inhibited the mRNA and protein expression of each gene. Knockdown of GPx4 and SOD1 but not catalase, GPx1, and SOD2 significantly induced cytotoxicity. Glutathione peroxidase 4 knockdown increased lipid oxidation and reactive oxygen species. The proliferation of GPx4 siRNA-treated cells was reduced compared with control siRNA-treated cells. Moreover, cell death in GPx4 siRNA-treated cells was characterized by positive staining for annexin V. In an oxidation stress study, GPx4 siRNA knockdown enhanced the cytotoxicity induced by hydrogen peroxide or ferric sulfide. These results suggest that GPx4 is essential for maintaining oxidative homeostasis and keeping defense against oxidative stress in conjunctival epithelial cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Nitrotetrazolium Blue chloride, powder, electrophoresis grade
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Nitrotetrazolium Blue chloride, ≥90.0% (HPLC)
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Hydrogen Peroxide Solution, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
Sigma-Aldrich
Hydrogen peroxide solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, 50 wt. % in H2O, stabilized
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Hydrogen peroxide solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis