Skip to Content
MilliporeSigma

Colostrogenesis during an induced lactation in dairy cattle.

Journal of animal physiology and animal nutrition (2014-05-16)
A Stark, O Wellnitz, C Dechow, R Bruckmaier, C Baumrucker
ABSTRACT

Colostrum immunoglobulin G (IgG) is of major importance for the newborn calf because epitheliochorial placentae do not provide transport in utero. The formation of colostrum occurs in the later stages of pregnancy. Our objectives were to induce lactation in non-pregnant dairy cows and (i) to determine the changes of IgG in serum and mammary secretions during the induction process and (ii) to establish α-lactalbumin (αLA) and prolactin (Prl) alterations to monitor the changing mammary epithelial tight junction status and development pattern. Estradiol-17β (E2) and progesterone (P4) injections in a 1-7 days series were combined with a 3-day injection series (day 21-23) of dexamethasone (DEX). Blood and both front quarter secretion samples were collected daily. Milking started 24 days after the start of the experiment. Results show that the mammary secretory IgG1 was increased at >7 days after the start of steroid injections and depicted a bimodal pattern reaching a high of 16 mg/ml at 21 day compared with 3.2 mg/ml in the serum. There was a small increase in secretory IgG2 that did not correlate with tight junction status, but never reached the serum concentration. The injections of DEX resulted in constriction of tight junctions. Secretory αLA was immediately increased with steroid injections, dropped precipitously after 7 days and then began a steady increase until the start of milking. Changes in serum αLA are related to mammary tight junctions while serum Prl gradually increased from 30 to >60 ng/ml after the steroid injections stopped. These results provide insights into the mechanisms and timing of colostrogenesis during an induced lactation protocol.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gelatin from cold water fish skin, 40-50% in H2O
Supelco
Progesterone, Pharmaceutical Secondary Standard; Certified Reference Material
Progesterone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Progesterone, powder, BioReagent, suitable for cell culture
Supelco
Progesterone, VETRANAL®, analytical standard
Sigma-Aldrich
Progesterone, ≥99%
Sigma-Aldrich
Progesterone, meets USP testing specifications
Sigma-Aldrich
Progesterone, γ-irradiated, BioXtra, suitable for cell culture
Dexamethasone for peak identification, European Pharmacopoeia (EP) Reference Standard
Progesterone for peak identification, European Pharmacopoeia (EP) Reference Standard
Progesterone for system suitability, European Pharmacopoeia (EP) Reference Standard
USP
Progesterone, United States Pharmacopeia (USP) Reference Standard
Supelco
Dexamethasone, Pharmaceutical Secondary Standard; Certified Reference Material
Dexamethasone, British Pharmacopoeia (BP) Assay Standard
Dexamethasone for system suitability, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Dexamethasone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
β-Estradiol, ≥98%
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
USP
Dexamethasone, United States Pharmacopeia (USP) Reference Standard
Supelco
Dexamethasone, VETRANAL®, analytical standard