- The fate of Microcystis aeruginosa cells during the ferric chloride coagulation and flocs storage processes.
The fate of Microcystis aeruginosa cells during the ferric chloride coagulation and flocs storage processes.
Microcystis blooms could cause severe problems for drinking water supplies with their associated microcystins (MCs). As the majority of MCs are retained inside the cells, the effective removal of the intact Microcystis cells to avoid the release of additional MCs plays an important role in drinking water treatment. This study evaluated the effect of ferric chloride (FeCl3) coagulation and the flocs storage process on the integrity of Microcystis aeruginosa cells and the intracellular MCs release (and possible degradation) in both processes. Multiple analysis techniques including scanning electron microscopy and chlorophyll fluorescence were used to assess the integrity of M. aeruginosa. In the coagulation process, the coagulant dosage and mechanical actions caused no cell damage, and all the cells remained intact. Furthermore, 100 mg/L FeCl3 was effective in removing the extracellular MCs. In the flocs storage process, a number of intracellular MCs were released into the supernatant, but the cells remained viable up to 10 d.