Skip to Content
MilliporeSigma
  • Identification of New Antifungal Compounds Targeting Thioredoxin Reductase of Paracoccidioides Genus.

Identification of New Antifungal Compounds Targeting Thioredoxin Reductase of Paracoccidioides Genus.

PloS one (2015-11-17)
Ana Karina Rodrigues Abadio, Erika Seki Kioshima, Vincent Leroux, Natalia Florêncio Martins, Bernard Maigret, Maria Sueli Soares Felipe
ABSTRACT

The prevalence of invasive fungal infections worldwide has increased in the last decades. The development of specific drugs targeting pathogenic fungi without producing collateral damage to mammalian cells is a daunting pharmacological challenge. Indeed, many of the toxicities and drug interactions observed with contemporary antifungal therapies can be attributed to "nonselective" interactions with enzymes or cell membrane systems found in mammalian host cells. A computer-aided screening strategy against the TRR1 protein of Paracoccidioides lutzii is presented here. Initially, a bank of commercially available compounds from Life Chemicals provider was docked to model by virtual screening simulations. The small molecules that interact with the model were ranked and, among the best hits, twelve compounds out of 3,000 commercially-available candidates were selected. These molecules were synthesized for validation and in vitro antifungal activity assays for Paracoccidioides lutzii and P. brasiliensis were performed. From 12 molecules tested, 3 harbor inhibitory activity in antifungal assays against the two pathogenic fungi. Corroborating these findings, the molecules have inhibitory activity against the purified recombinant enzyme TRR1 in biochemical assays. Therefore, a rational combination of molecular modeling simulations and virtual screening of new drugs has provided a cost-effective solution to an early-stage medicinal challenge. These results provide a promising technique to the development of new and innovative drugs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MOPS, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
MOPS, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
MOPS, ≥99.5% (titration)
Sigma-Aldrich
Fluconazole, ≥98% (HPLC), powder
Sigma-Aldrich
MOPS, anhydrous, free-flowing, Redi-Dri, ≥99.5%
SAFC
MOPS
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide solution, 50 wt. % in H2O
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture