Skip to Content
MilliporeSigma
  • Chain Length of Free Fatty Acids Influences the Phase Behavior of Stratum Corneum Model Membranes.

Chain Length of Free Fatty Acids Influences the Phase Behavior of Stratum Corneum Model Membranes.

Langmuir : the ACS journal of surfaces and colloids (2015-10-08)
Adrian Paz Ramos, Michel Lafleur
ABSTRACT

The skin, the largest organ of the human body, forms a flexible interface between our internal and external environment that protects our organism from exogenous compounds as well as excessive water loss. The stratum corneum (SC), the outermost layer of mammal epidermis, is mainly responsible for the skin impermeability. The SC is formed by corneocytes embedded in a lipid matrix, which is mostly constituted of ceramides (Cer), free fatty acids (FFA), and cholesterol (Chol), organized in two coexisting crystalline lamellar phases. This arrangement of lipids is crucial to skin barrier function. The aim of this paper is to determine the impact of FFA chain length on the phase behavior of SC model lipid membranes using solid-state deuterium NMR and IR spectroscopy. We studied ternary mixtures of N-lignoceroyl-d-erythro-sphingosine (Cer24), cholesterol, and palmitic (FFA16) or lignoceric (FFA24) acid in an equimolar ratio. This proportion replicates the lipid composition found in the SC lipid matrix. Our studies revealed that the phase behavior of Cer24/FFA/Chol ternary mixtures is strongly affected by the length of the FFA. We found the formation of phase-separated crystalline lipid domains when using palmitic acid whereas the use of lignoceric acid results in a more homogeneous mixture. In addition, it was observed that mixtures with lignoceric acid form a gel phase, a very unusual feature for SC model mixtures.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Sodium chloride, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Methanol, NMR reference standard
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Palmitic acid, natural, 98%, FG
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Palmitic acid, ≥98%, FCC, FG
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Rhein, technical grade
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Palmitic acid, ≥98% palmitic acid basis (GC)
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Palmitic acid, BioXtra, ≥99%
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Lignoceric acid, ≥99% (GC)