MilliporeSigma
  • Enhanced Self-Cleaning Properties on Polyester Fabric Under Visible Light Through Single-Step Synthesis of Cuprous Oxide Doped Nano-TiO2.

Enhanced Self-Cleaning Properties on Polyester Fabric Under Visible Light Through Single-Step Synthesis of Cuprous Oxide Doped Nano-TiO2.

Photochemistry and photobiology (2015-06-16)
Hamdam Gaminian, Majid Montazer
ABSTRACT

Nowadays, introducing self-cleaning properties on various fabrics under daylight irradiation for automotive and upholstery application is in a central point of research. This can be achieved by application of metal-doped TiO2 nano particles on the textile fabrics. Here, alkali hydrolysis of polyester fabric has been carried out along with synthesis of Cu2 O/TiO2 nanoparticles in a single-step process by using sonochemical technique. CuSO4 .5H2 O was used as a source of copper in the presence of glucose as reducing and stabilizing agent. Moreover, central composite design based on response surface methodology (RSM) was used to determine the role of variables (CuSO4 .5H2 O, glucose and pH) and their effects on the self-cleaning properties and weight of the fabric. The self-cleaning property was investigated by degradation of Methylene blue on the surface of the treated fabrics under daylight. Further, the tensile properties, colorimetric measurement, and washing fastness of the treated fabric produced in the optimum conditions were investigated. The morphology of Cu2 O/TiO2 nanoparticles was examined using X-ray diffraction and field emission scanning electron microscopy (FESEM). The new polyester fabric obtained through in situ synthesis of Cu2 O/TiO2 nanoparticles can be used as a desirable stable fabric with high tensile strength and visible-light self-cleaning properties.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Titanium(IV) oxide, contains 1% Mn as dopant, nanopowder, <100 nm particle size (BET), ≥97%
Sigma-Aldrich
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, nanowires, diam. × L ~100 nm × 10 μm
Sigma-Aldrich
Titanium(IV) oxide, nanowires, diam. × L ~10 nm × 10 μm
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, <001>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Copper(II) sulfate, anhydrous, powder, ≥99.99% trace metals basis